This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Workflow Steps

A Workflow Step is an individual action made within a workflow, such as load from a csv file, insert data into a table, or notify a user via SMS that an error condition occurred. To view the steps in a workflow, go to a project and the Workflow tab, and open a workflow to view all its steps.

1 - Workflow Control Steps

1.1 - Create Workflow

Create a new workflow in 'Analyze'

Description

Create a new PlaidCloud Analyze workflow.

Workflow to Create

First, select the Project in which the new workflow should be created from the dropdown menu.

Next, type in a workflow name. The name should be unique to the Project.

Examples

No examples yet...

1.2 - Run Workflow

Run an existing workflow

Description

“Run Workflow” runs an existing workflow.

Workflow to Run

First, select the Project which contains the workflow to be run from the Project dropdown menu.

Next, select the particular workflow to be run from the Workflow dropdown menu.

Additionally, there is an option to Wait until processing completes before continuing. Selecting this checkbox will defer execution of the current workflow until the called workflow is completed with its execution. By default, this option is disabled, meaning that the current workflow in which this transform resides will continue processing in parallel along with the called workflow.

Examples

No examples yet...

1.3 - Stop Workflow

Stop an existing, running workflow

Description

“Stop Workflow” stops an existing, running workflow.

Workflow to Stop

First, select the Project which contains the workflow to be stopped from the Project dropdown menu.

Next, select the particular workflow to be stopped from the Workflow dropdown menu.

Examples

No examples yet...

1.4 - Copy Workflow

Make a copy of an existing PlaidCloud Analyze workflow

Description

Make a copy of an existing PlaidCloud Analyze workflow.

Workflow to Copy

First, select the Project which contains the workflow to be copied from the Project dropdown menu.

Next, select the particular workflow to be copied from the Workflow dropdown menu.

Next, enter the new workflow name into the New Workflow field. Remember: the name should be unique to the Project.

Examples

No examples yet...

1.5 - Rename Workflow

Rename an Existing PlaidCloud Analyze Workflow

Description

Rename an existing PlaidCloud Analyze workflow.

Workflow to Rename

First, select the Project which contains the workflow to be renamed from the Project dropdown menu.

Next, select the particular workflow to be renamed from the Workflow dropdown menu.

Finally, enter the new workflow name in the Rename To field. Remember that the name should be unique to the Project.

Examples

No examples yet...

1.6 - Delete Workflow

Delete an existing PlaidCloud Analyze workflow

Description

Delete an existing PlaidCloud Analyze workflow.

Workflow to Delete

First, select the Project which contains the workflow to be deleted from the Project dropdown menu.

Next, select the particular workflow to be deleted from the Workflow dropdown menu.

Examples

No examples yet...

1.7 - Set Project Variable

Set a project variable for use during a workflow

Description

“Set Project Variable” sets project variables for use during the workflow. A variable name and value may contain any combination of valid characters, including spaces. Variables are referenced within the workflow by placing them inside curly braces. For example, a_variable is referenced within a transform as {a_variable} so it could be used in something like a formula or field value (e.g., {a_variable} * 2).

Variable List

The table will display the list of registered project variables and the current values. Enter the value for the variable desired. It’s also possible to set variable values without registering the variable first by simply adding the variable to the list.

Examples

No examples yet...

1.8 - Set Workflow Variable

Set variables during a workflow

Description

“Set Workflow Variable” sets workflow variables for use during the workflow. A variable name and value may contain any combination of valid characters, including spaces. Variables are referenced within the workflow by placing them inside curly braces. For example, a_variable is referenced within a transform as {a_variable} so it could be used in something like a formula or field value (e.g. {a_variable} * 2).

Variable List

The table will display the list of registered workflow variables and the current values. Enter the value for the variable desired. It’s also possible to set variable values without registering the variable first by simply adding the variable to the list.

Examples

No examples yet...

1.9 - Worklow Loop

Runs a workflow looping over a dataset as Project variables

Description

Loops over a dataset and runs a specific workflow using the values of the looping dataset as Project variables.

Workflow to Stop

First, select the Project which contains the workflow that will be run on each loop from the Project dropdown menu.

Next, select the particular workflow for running from the Workflow dropdown menu.

Examples

Examples coming soon

1.10 - Raise Workflow Error

Raises an error in a workflow

Description

Raise an error in a PlaidCloud Analyze workflow.

Raise Workflow Error

Mainly for use with step conditions, the step can be set to execute if conditions are met and raise an error within the workflow

1.11 - Clear Workflow Log

Clear the Log from an existing PlaidCloud 'Analyze' Workflow

Description

Clear the log from an existing PlaidCloud Analyze workflow.

Workflow Log to Clear

First, select the Project which contains the workflow log to be cleared from the Project dropdown menu.

Next, select the particular workflow log to be cleared from the Workflow dropdown menu.

2 - Import Steps

2.1 - Import Archive

Import an archived project

Description

Imports PlaidCloud table archive.

Examples

No examples yet...


Import Parameters

Import Source and Target

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Source Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

Source FilePath

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

2.2 - Import CSV

Description

Import delimited text files from PlaidCloud Document. This includes, but is not limited to, the following delimiter types:

  • comma (, )
  • pipe (|)
  • semicolon (; )
  • tab
  • space ( )
  • at symbol (@)
  • tilda (~)
  • colon (:)

Examples

No examples yet...


Import Parameters

Import Source and Target

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Source Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

Source FilePath

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Inspect Selected Source File

By pressing the Guess Settings from Source File button, PlaidCloud will open the file and inspect it to attempt to determine the data format. Always check the guessed settings to make sure they seem correct.

Data Format

Delimiter

As mentioned above, Inspect Source File will attempt to determine the delimiter in the source file. If another delimiter is desired, use this section to specify the delimiter. Users can choose from a list of standard delimiters.

  • comma (, )
  • pipe (|)
  • semicolon (; )
  • tab
  • space ( )
  • at symbol (@)
  • tilda (~)
  • colon (:)

Header Type

Since CSVs may or may not contain headers, PlaidCloud provides a way to either use the headers, ignore headers, or use column order to determine the column alignment.

  • No Header: The CSV file contains no header. Use the source list in the Data Mapper to determine the column alignment
  • Has Header - Use Header and Override Field List: The CSV file has a header. Use the header names specified and ignore the source list in the Data Mapper.
  • Has Header - Skip Header and Use Field List Instead: The CSV file has a header but it should be ignored. Use the header names specified by the source list in the Data Mapper.

Date Format

This setting is useful if the dates contained in the CSV file are not readily recognizable as dates and times. The import process attempts to convert dates but having a little extra information can help in the import process.

Special Characters

The special character inputs control how PlaidCloud handles the presence of certain characters and what they mean in the context of processing the CSV

  • Quote Character: This is the character used to indicate an enclosed set of text that should be processed as a single field
  • Escape Character: This is the character used to indicate the following character should be processed as it is and not interpreted as a special character. Useful when field may contain the delimiter.
  • Null Character: Since CSVs don't have data types, this character provides a way to indicate that the value should be NULL rather than an empty string or 0.
  • Trailing Negatives: Some source systems generate negative numbers with trailing negative symbols instead of prefixing the negative. This setting will process those as negative numbers.

Row Selection

For input files with extraneous records, you can specify a number of rows to skip before processing the data. This is useful if files contain header blocks that must be skipped before arriving at the tabular data.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.3 - Import Excel

Import worksheets from Excel files within PlaidCloud Document

Description

Import specific worksheets from Microsoft Excel files from PlaidCloud Document. Analyze supports the legacy Excel format (XP/2003) as well as the new format (2007/2010/2013). This includes, but is not limited to, the following file types:

  • XLS
  • XLSX
  • XLSB
  • XLSM

Examples

No examples yet...


Import Parameters

Import Source and Target

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Source Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

Source FilePath

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Since Excel files may or may not contain headers, PlaidCloud provides a way to either use the headers, ignore headers, or use column order to determine the column alignment.

  • No Header: The file contains no header. Use the source list in the Data Mapper to determine the column alignment
  • Has Header - Use Header and Override Field List: The file has a header. Use the header names specified and ignore the source list in the Data Mapper.
  • Has Header - Skip Header and Use Field List Instead: The file has a header but it should be ignored. Use the header names specified by the source list in the Data Mapper.

Row Selection

For input files with extraneous records, you can specify a number of rows to skip before processing the data. This is useful if files contain header blocks that must be skipped before arriving at the tabular data.

Worksheets to Import

Because workbooks may contain many worksheets with different data, it is possible to select which worksheets should be imported in the current import process. The options are:

  • All Worksheets
  • Worksheets Matching Search
  • Selected Worksheets

The search functionality for worksheets allows inclusion of worksheets matching the search criteria. The search criteria allows for:

  • Starts With: The worksheet name starts with the search text
  • Contains: The worksheet name contains the search text
  • Ends With: The worksheet name ends with the search text

Find Sheets in Selected File

The find sheets button will open the Excel file and list the worksheets available in the table. Mark the checkboxes in the table for the worksheets to be included in the import.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.4 - Import External Database Tables

Import all or a subset of tables in an external database

Description

Includes ability to perform delta loads and map to alternate target table names.

Examples

No examples yet...


Unique Configuration Items

None


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.5 - Import Fixed Width

Import Fixed Width files

Description

Imports fixed-width files.

Examples

No examples yet…


Import Parameters

Import Source and Target

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Source Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

Source FilePath

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Since Excel files may or may not contain headers, PlaidCloud provides a way to either use the headers, ignore headers, or use column order to determine the column alignment.

  • No Header: The file contains no header. Use the source list in the Data Mapper to determine the column alignment
  • Has Header - Use Header and Override Field List: The file has a header. Use the header names specified and ignore the source list in the Data Mapper.
  • Has Header - Skip Header and Use Field List Instead: The file has a header but it should be ignored. Use the header names specified by the source list in the Data Mapper.

Row Selection

For input files with extraneous records, you can specify a number of rows to skip before processing the data. This is useful if files contain header blocks that must be skipped before arriving at the tabular data.

Column Widths

Enter the widths of the columns seperated with commas or spaces.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.6 - Import Google BigQuery

Import Google BigQuery files

Description

Import Google BigQuery files.

Examples

No examples yet...


Unique Configuration Items

Coming soon...


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.7 - Import Google Spreadsheet

Import specific worksheets from Google Spreadsheet files

Description

Import specific worksheets from Google Spreadsheet files.

Examples

No examples yet...


Import Parameters

Import Google Spreadsheet

Source And Target

Google Account

Accessing Google Spreadsheet data requires a valid Google user account. This requires set up in Tools. For details on setting up a Google account connection, see here: PlaidCloud Tools – Connection.

Once all necessary accounts have been set up, select the appropriate Google Account from the drop down list.

Spreadsheet

Next, specify the Spreadsheet to import from the dropdown menu containing all available files associated with the specified Google Account.

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Header Type

Since Google Spreadsheets may or may not contain headers, PlaidCloud provides a way to either use the headers, ignore headers, or use column order to determine the column alignment.

  • No Header: The file contains no header. Use the source list in the Data Mapper to determine the column alignment
  • Has Header - Use Header and Override Field List: The file has a header. Use the header names specified and ignore the source list in the Data Mapper.
  • Has Header - Skip Header and Use Field List Instead: The file has a header but it should be ignored. Use the header names specified by the source list in the Data Mapper.

Worksheets to Import

Because workbooks may contain many worksheets with different data, it is possible to select which worksheets should be imported in the current import process. The options are:

  • All Worksheets
  • Worksheets Matching Search
  • Selected Worksheets

The search functionality for worksheets allows inclusion of worksheets matching the search criteria. The search criteria allows for:

  • Starts With: The worksheet name starts with the search text
  • Contains: The worksheet name contains the search text
  • Ends With: The worksheet name ends with the search text

Find Sheets in Selected File

The find sheets button will open the Excel file and list the worksheets available in the table. Mark the checkboxes in the table for the worksheets to be included in the import.

Column Headers

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.


2.8 - Import HDF

Import HDF5 files from PlaidCloud Document

Description

Import HDF5 files from PlaidCloud Document.

For more details on HDF5 files, see the HDF Group’s official website here: http://www.hdfgroup.org/HDF5/.

Examples

No examples yet...


Unique Configuration Items

Key Name

HDF files store data in a path structure. A key (path) is needed as the destination for the table within the HDF file. In most situations, this will be table.


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.9 - Import HTML

Import HTML table data from the internet

Description

Import HTML table data from the internet.

Examples

No examples yet...


Unique Configuration Items

Select Tables in HTML

Since it is possible to have multiple tables on a web page, the user must specify which table to import. To do so, specify Name and/or Attribute values to match.

For example, consider the following table:

<table border="1" id="import"> <tr> <th>Hello</th><th>World</th> </tr> <tr> <td>1</td><td>2</td> </tr> <tr> <td>3</td><td>4</td> </tr> </table>

To import this table, specify id:import in the Name Match field.

Additionally, there is an option to skip rows at the beginning of the table.

Column Headers

Specify the row to use for header information. By default, the Column Header Row is 0.


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.10 - Import JSON

Import JSON text files from PlaidCloud Document

Description

Import JSON text files from PlaidCloud Document.

For more details on JSON files, see the JSON official website here: http://json.org/.

JSON files do not retain column order. The column order in the source file does not necessarily reflect the column order in the imported data table.

Examples

No examples yet...


Unique Configuration Items

JSON Data Orientation

Consider the following data set:

| ID | Name | Gender | State | | 1 | Jack | M | MO | | 2 | Jill | F | MO | | 3 | George | M | VA | | 4 | Abe | M | KY |

JSON files can be imported from one of three data formats:

  • Records: Data is stored in Python dictionary sets, with each row stored in {Column -> Value, …} format. For example:
[{ "ID": 1, "Name": "Jack", "Gender": "M", "State": "MO" }, { "ID": 2, "Name": "Jill", "Gender": "F", "State": "MO" }, { "ID": 3, "Name": "George", "Gender": "M", "State": "VA" }, { "ID": 4, "Name": "Abe", "Gender": "M", "State": "KY" }]
  • Index: Data is stored in nested Python dictionary sets, with each row stored in {Index -> {Column -> Value, …},…} format. For example:
{ "0": { "ID": 1, "Name": "Jack", "Gender": "M", "State": "MO" }, "1": { "ID": 2, "Name": "Jill", "Gender": "F", "State": "MO" }, "2": { "ID": 3, "Name": "George", "Gender": "M", "State": "VA" }, "3": { "ID": 4, "Name": "Abe", "Gender": "M", "State": "KY" } }
  • Split: Data is stored in a single Python dictionary set, values stored in lists. For example:
{ "columns": ["ID", "Name", "Gender", "State"], "index": [0, 1, 2, 3], "data": [ [1, "Jack", "M", "MO"], [2, "Jill", "F", "MO"], [3, "George", "M", "VA"], [4, "Abe", "M", "KY"] ] }

Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.11 - Import Project Table

Import table data from a different project

Description

Import table data from a different project.


Data Sharing Management

Data Sharing Management

In order to import a table from another project you must first go to both projects Home Tab and allow the projects to share data with each other. To do this select New Data Share and select the project and give them Read access.

Import External Project Table

Import Source and Target

Read From

Select the Source Project and Source Table from the drop downs.

Write To

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

2.12 - Import Quandl

Imports data sets from Quandl’s repository of millions of data sets

Description

Imports data sets from Quandl’s repository of millions of data sets.

For more details on Quandl data sets, see the Quandl official website here: http://www.quandl.com/.

Examples

No examples yet...


Unique Configuration Items

Source Data Specification

Accessing Quandl data sets requires a user account or a guest account with limited access. This requires set up in Tools. For details on setting up a Quandl account connection, see here: PlaidCloud Tools – Connection.

Once all necessary accounts have been set up, select the appropriate account from the drop down list.

Next, enter criteria for the desired Quandl code. Users can use the Search functionality to search for data sets. Alternatively, data sets can be entered manually. This requires the user to enter the portion of the URL after “http://www.quandl.com”.

For example, to import the data set for Microsoft stock, which can be found here (http://www.quandl.com/GOOG/NASDAQ_MSFT), enter GOOG/NASDAQ_MSFT in the Quandl Code field.

Data Selection

It is possible to slice Quandl data sets upon import. Available options include the following:

  • Start Date: Use the date picker to select the desired date.
  • End Date: Use the date picker to select the desired date.
  • Collapse: Aggregate results on a daily, weekly, monthly, quarterly, or annual basis. There is no aggregation by default.
  • Transformation: Summary calculations.
  • Limit Rows: The default value of 0 returns all rows. Any other positive integer value will specify the limit of rows to return from the data set.

Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.13 - Import SAS7BDAT

Import SAS table files from PlaidCloud Document

Description

Import SAS table files from PlaidCloud Document.

Examples

No examples yet...


Unique Configuration Items

None


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.14 - Import SPSS

Import SPSS sav and zsav files from PlaidCloud Document

Description

Import SPSS sav and zsav files from PlaidCloud Document.

Examples

No examples yet...


Unique Configuration Items

None


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.15 - Import SQL

Import data from a remote SQL database.

Description

Import data from a remote SQL database.


Import Parameters

Import SQL Table


Source And Target

Database Connection

To establish a Database Connection please refer to PlaidCloud Data Connections

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

SQL Query

In this section write the SQL query to return the required data.

Column Type Guessing

SQL Imports have the option of attempting to guess the data type during load, or to set all columns to type Text. Setting the data types dynamically can be quicker if the data is clean, but can cause issues in some circumstances.

For example, if most of the data appears to be numeric but there is some text as well, it may try to set it as numeric causing load issues with mismatched data types. Or there could be issues if there is a numeric product code that is 16 digits, for example. It would crop the leading zeroes resulting in a number instead of a 16 digit code.

Setting the data to all text, however, requires a subsequent Extract step to convert any data types that shouldn't be text to the appropriate type, like dates or numerical values.


2.16 - Import Stata

Import Stata files from PlaidCloud Document

Description

Import Stata files from PlaidCloud Document.

Examples

No examples yet...


Unique Configuration Items

None


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

2.17 - Import XML

Import XML data as an XML file

Description

Import XML data as an XML file.

Examples

No examples yet...


Unique Configuration Items

None


Common Configuration Items

Remove non-ASCII Characters Option

By selecting this option, the import will remove any content that is not ASCII. While PlaidCloud fully supports Unicode (UTF-8), real-world files can contain all sorts of encodings and stray characters that make them challenging to process.

If the content of the file is expected to be ASCII only, checking this box will help ensure the import process runs smoothly.

Delete Files After Import Option

This option will allow the import process to delete the file from the PlaidCloud Document account after a successful import has completed.

This can be useful if the import files are generated can be recreated from a system of record or there is no reason to retain the raw input files once they have been processed.

Import File Selector

The file selector in this transform allows you to choose a file stored in a PlaidCloud Document location for import.

You can also choose a directory to import and all files within that directory will be imported as part of the transform run.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory or file in the next selection.

Search Option

The Search option allows for finding all matching files below a specified directory path to import. This can be particularly useful if many files need to be included but they are stored in nested directories or are mixed in with other files within the same directory which you do not want to import.

The search path selected is the starting directory to search under. The search process will look for all files within that directory as well as sub-directories that match the search conditions specified. Ensure the search criteria can be applied to the files within the sub-directories too.

The search can be applied using the following conditions:

  • Exact: Match the search text exactly
  • Starts With: Match any file that starts with the search text
  • Contains: Match any file that contains the search text
  • Ends With: Match any file that ends with the search text

File or Directory Selection Option

When a specific file or directory of files are required for import, picking the file or directory is a better option than using search.

To select the file or directory, simply use the browse button to pick the path for the Document account selected above.

Variable Substition

For both the search option and specific file/directory option, variables can be used with in the path, search text, and file names.

An example that uses the current_month variable to dynamically point to the correct file:

legal_entity/inputs/{current_month}/ledger_values.csv

Target Table

The target selection for imports is limited to tables only since views do not contain underlying data.

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the target for the import, leave the Dynamic box unchecked and select the target Table.

If the target Table does not exist, select the Create new table button to create the table in the desired location.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

3 - Export Steps

3.1 - Export to CSV

Export an Analyze data table to PlaidCloud Document as a CSV delimited file

Description

Export an Analyze data table to PlaidCloud Document as a CSV delimited file.

Export Parameters

Export File Selector

Export File Selector

The file selector in this transform allows you to choose a destination store the exported result in a PlaidCloud Document.

You choose a directory and specify a file name for the target file.

Source Table

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to source table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the source for the export, leave the Dynamic box unchecked and select the source table.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory next selection.

Target Directory Path

Select the Browse icon to the right of the Target Directory Path and navigate to the location you want the file saved to.

Target File Name

Specify the name the exported file should be saved as.

Selecting File Compression

All exported files are uncompressed, but the following compression options are available:

  • No Compression
  • Zip
  • GZip
  • BZip2

Data Format

Export CSV Data Format

Delimiter

The Export CSV transform is used to export data tables into delimited text files saved in PlaidCloud Document. This includes, but is not limited to, the following delimiter types:

  • Excel CSV (comma separated)

  • Excel TSV (tab separated)

  • User Defined Separator –>

    • comma (,)
    • pipe (|)
    • semicolon (;)
    • tab
    • space ( )
    • other/custom (tilde, dash, etc)

To specify a custom delimiter, select User Defined Separator –> and then Other –>, and type the custom delimiter into the text box.

Special Characters

The Special Characters section allows users to specify how to handle data with quotation marks and escape characters. Choose from the following settings:

  • Special Characters (QUOTE_MINIMAL): Quote fields with special characters (anything that would confuse a parser configured with the same dialect and options). This is the default setting.
  • All (QUOTE_ALL): Quote everything, regardless of type.
  • Non-Numeric (QUOTE_NONNUMERIC): Quote all fields that are not integers or floats. When used with the reader, input fields that are not quoted are converted to floats.
  • None (QUOTE_NONE): Do not quote anything on output. Quote characters are included in output with the escape character provided by the user. Note that only a single escape character can be provided.

Write Header To First Row

If this checkbox is selected the table headers will be exported to the first row. If it is not there will be no headers in the exported file.

Include Data Types In Headers

If this checkbox is selected the headers of the exported file will contain the data type for the column.

Windows Line Endings

Lastly, the Use Windows Compatible Line Endings checkbox is selected by default to ensure compatibility with Windows systems. It is advisable to leave this setting on unless working in a unix-only environment.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.2 - Export to Excel

Export an Analyze data table to PlaidCloud Document as a Microsoft Excel file

Description

Export an Analyze data table to PlaidCloud Document as a Microsoft Excel file. PlaidCloud Analyze supports modern versions of Microsoft Excel (2007-2016) as well as legacy versions (2000/2003).

Export Parameters

Export File Selector

Export File Selector

The file selector in this transform allows you to choose a destination store the exported result in a PlaidCloud Document.

You choose a directory and specify a file name for the target file.

Source Table

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to source table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the source for the export, leave the Dynamic box unchecked and select the source table.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory next selection.

Target Directory Path

Select the Browse icon to the right of the Target Directory Path and navigate to the location you want the file saved to.

Target File Name

Specify the name the exported file should be saved as.

Target Sheet Name

Specify the target sheet name, the default is Sheet1

Selecting File Compression

All exported files are uncompressed, but the following compression options are available:

  • No Compression
  • Zip
  • GZip
  • BZip2

Write Header To First Row

If this checkbox is selected the table headers will be exported to the first row. If it is not there will be no headers in the exported file.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.3 - Export to External Project Table

Export data from a project table to different project's table.

Description

Export data from a project table to different project's table.

Data Sharing Management

Data Sharing Management

In order to export a table to another project you must first go to both projects Home Tab and allow the projects to share data with each other. To do this select New Data Share and select the project and give them Read access.

Export External Project Table

Export External Project Table

Read From

Select the Source Table from the drop down menu.

Write To

Target Project

Select the Target Project from the drop down menu.

Target Table Static

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Target Table Dynamic

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to target table:

legal_entity/inputs/{current_month}/ledger_values

Append to Existing Data

To append the data from the source table to the target table select the Append to Existing Data check box.

3.4 - Export to Google Spreadsheet

Export an Analyze data table to Google Drive as a Google Spreadsheet

Description

Export an Analyze data table to Google Drive as a Google Spreadsheet. A valid Google account is required to use this transform. User credentials must be set up in PlaidCloud Tools prior to using the transform.

Export Parameters

Source and Target

Select the Source Table from PlaidCloud Document using the dropdown menu.

Next, specify the Target Connection information. For details on setting up a Google Docs account connection, see here: PlaidCloud Tools – Connection. Once all necessary accounts have been set up, select the appropriate account from the dropdown list.

Finally, provide the Target Spreadsheet Name and Target Worksheet Name. If desired, select the Append data to existing Worksheet data checkbox to append data to an existing Worksheet. If the target worksheet does not yet exist, it will be created.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.5 - Export to HDF

Export an Analyze data table to PlaidCloud Document as an HDF5 file

Description

Export an Analyze data table to PlaidCloud Document as an HDF5 file.

For more details on HDF5 files, see the HDF Group’s official website here: http://www.hdfgroup.org/HDF5/.

Export Parameters

Export File Selector

Export File Selector

The file selector in this transform allows you to choose a destination store the exported result in a PlaidCloud Document.

You choose a directory and specify a file name for the target file.

Source Table

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to source table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the source for the export, leave the Dynamic box unchecked and select the source table.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory next selection.

Target Directory Path

Select the Browse icon to the right of the Target Directory Path and navigate to the location you want the file saved to.

Target File Name

Specify the name the exported file should be saved as.

Output File Type

All exported files are uncompressed, but the following compression options are available:

  • Zip
  • GZip
  • BZip2

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.6 - Export to HTML

Export an Analyze data table to PlaidCloud Document as an HTML file

Description

Export an Analyze data table to PlaidCloud Document as an HTML file. The resultant HTML file will simply contain a table.

Export Parameters

Export File Selector

Export File Selector

The file selector in this transform allows you to choose a destination store the exported result in a PlaidCloud Document.

You choose a directory and specify a file name for the target file.

Source Table

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to source table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the source for the export, leave the Dynamic box unchecked and select the source table.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory next selection.

Target Directory Path

Select the Browse icon to the right of the Target Directory Path and navigate to the location you want the file saved to.

Target File Name

Specify the name the exported file should be saved as.

Export HTML

Bold Rows

Select this checkbox to make the first row (header row) bold font.

Escape

This option is enabled by default. When the checkbox is selected, the export process will convert the characters <, >, and & to HTML-safe sequences.

Double Precision

See details here:

Output File Type

All exported files are uncompressed, but the following compression options are available:

  • Zip
  • GZip
  • BZip2

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.7 - Export to JSON

Export an Analyze data table to PlaidCloud Document as a JSON file

Description

Export an Analyze data table to PlaidCloud Document as a JSON file. There are several options (shown below) for data orientation.

For more details on JSON files, see the JSON official website here: http://json.org/.

Export Parameters

Export File Selector

Export File Selector

The file selector in this transform allows you to choose a destination store the exported result in a PlaidCloud Document.

You choose a directory and specify a file name for the target file.

Source Table

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to source table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the source for the export, leave the Dynamic box unchecked and select the source table.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory next selection.

Target Directory Path

Select the Browse icon to the right of the Target Directory Path and navigate to the location you want the file saved to.

Target File Name

Specify the name the exported file should be saved as.

JSON Orientation

Consider the following data set:

IDNameGenderState
1JackMMO
2JillFMO
3GeorgeMVA
4AbeMKY

JSON files can be exported into one of four data formats:

  • Records: Data is stored in Python dictionary sets, with each row stored in {Column -> Value, …} format. For example: [{“ID”:1,”Name”:”Jack”,”Gender”:”M”,”State”:”MO”},{“ID”:2,”Name”:”Jill”,”Gender”:”F”,”State”:”MO”},{“ID”:3,”Name”:”George”,”Gender”:”M”,”State”:”VA”},{“ID”:4,”Name”:”Abe”,”Gender”:”M”,”State”:”KY”}]
  • Index: Data is stored in nested Python dictionary sets, with each row stored in {Index -> {Column -> Value, …},…} format. For example: {“0”:{“ID”:1,”Name”:”Jack”,”Gender”:”M”,”State”:”MO”},”1”:{“ID”:2,”Name”:”Jill”,”Gender”:”F”,”State”:”MO”},”2”:{“ID”:3,”Name”:”George”,”Gender”:”M”,”State”:”VA”},”3”:{“ID”:4,”Name”:”Abe”,”Gender”:”M”,”State”:”KY”}}
  • Split: Data is stored in a single Python dictionary set, values are stored in lists. For example: {“columns”:[“ID”,”Name”,”Gender”,”State”],”index”:[0,1,2,3],”data”:[[1,”Jack”,”M”,”MO”],[2,”Jill”,”F”,”MO”],[3,”George”,”M”,”VA”],[4,”Abe”,”M”,”KY”]]}
  • Values: Data is stored in multiple Python lists. For example: [[1,”Jack”,”M”,”MO”],[2,”Jill”,”F”,”MO”],[3,”George”,”M”,”VA”],[4,”Abe”,”M”,”KY”]]

Date Handling

Specify Date Format using the dropdown menu. Choose from the following formats:

  • Epoch (Unix Timestamp – Seconds since 1/1/1970)
  • ISO 8601 Format (YYYY-MM-DD HH:MM:SS with timeproject offset)

Specify Date Unit using the dropdown menu. Choose from the following formats, listed in order of increasing precision:

  • Seconds (s)
  • Milliseconds (ms)
  • Microseconds (us)
  • Nanoseconds (ns)

Force ASCII

Select this checkbox to ensure that all strings are encoded in proper ASCII format. This is enabled by default.

Output File Type

All exported files are uncompressed, but the following compression options are available:

  • Zip
  • GZip
  • BZip2

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.8 - Export to Quandl

Export an Analyze data table to Quandl’s database

Description

Export an Analyze data table to Quandl’s database.

Source and Target

Specify the following parameters:

  • Source Table: Analyze data table to export
  • Quandl Connection: Accessing Quandl data sets requires a user account or a guest account with limited access. This requires set up in Tools. For details on setting up a Quandl account connection, see here: PlaidCloud Tools – Connection
  • Quandl Code: Use the Search button to search for data sets. Alternatively, data sets can be entered manually. This requires the user to enter the portion of the URL after “http://www.quandl.com”. For example, to import the data set for Microsoft stock, which can be found here (http://www.quandl.com/GOOG/NASDAQ_MSFT), enter GOOG/NASDAQ_MSFT in the Quandl Code field
  • Dataset Name: Name of the dataset to be exported to Quandl
  • Dataset Description: Description of dataset to be exported to Quandl

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

For more aggregation details, see the Analyze overview page here.

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

No examples yet...

3.9 - Export to SQL

Export an Analyze data table to PlaidCloud Document as an SQL

Description

Export an Analyze data table to PlaidCloud Document as an SQL.

Examples

No examples yet...

3.10 - Export to Table Archive

Exports PlaidCloud table archive file

Description

Exports PlaidCloud table archive file.

Export Parameters

Export File Selector

Export File Selector

The file selector in this transform allows you to choose a destination store the exported result in a PlaidCloud Document.

You choose a directory and specify a file name for the target file.

Source Table

Dynamic Option

The Dynamic option allows specification of a table using text, including variables. This is useful when employing variable driven workflows where table and view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to source table:

legal_entity/inputs/{current_month}/ledger_values

Static Option

When a specific table is desired as the source for the export, leave the Dynamic box unchecked and select the source table.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Selecting a Document Account

Choose a PlaidCloud Document account for which you have access. This will provide you with the ability to select a directory next selection.

Target Directory Path

Select the Browse icon to the right of the Target Directory Path and navigate to the location you want the file saved to.

Target File Name

Specify the name the exported file should be saved as.

Examples

No examples yet...

3.11 - Export to XML

Export an Analyze data table to PlaidCloud Document as an XML file.

Description

Export an Analyze data table to PlaidCloud Document as an XML file.

4 - Table Steps

4.1 - Table Anti Join

This function provides an unmatched set of data between two tables

Description

Table Anti Join provides the unmatched set of items between two tables. This will return the list of items in the first table without matches in the second table. This can be quite useful for determining which records are present in one table but not another.

This operation could be accomplished by using outer joins and filtering on null values for the join; however, the Anti Join transform will perform this in a more efficient and obvious way.

Table Data Selection

Table Source

Specify the source data table by selecting it from the dropdown menu.

Source Columns

Specify any columns to be included here. Selecting the Inspect Source and Populate Source Mapping Table buttons will make these columns available for the join operation.

Select Subset of Source Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples.

Table Source

Table Output

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Join Map

Table Join Map

Specify join conditions. Using the Guess button will find all matching columns from both Table 1 as well as Table 2. To add additional columns manually, right click anywhere in the section and select either Insert Row or Append Row, to add a row prior to the currently selected row or to add a row at the end, respectively. Then, type the column names to match from Table 1 to Table 2. To remove a field from the Join Map, simply right-click and select Delete.

Target Output Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Output Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

4.2 - Table Append

Used append data to an existing table.

Description

Used append data to an existing table.

Load Parameters

Source and Target

Source And Target

To establish the source and target tables, first select the data table to be extracted from using the Source Table dropdown menu. Next, select an existing table as the target table using the Target Table dropdown.

Table Data Selection

When configuring the Data Mapper the columns in the source table must be mapped to a column in the target table.

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

4.3 - Table Clear

Clear the contents of an existing data table without deleting the actual data table

Description

Clear the contents of an existing data table without deleting the actual data table. The end result is a data table with 0 rows.

Table Selection

There are two options for selecting the table or in the second option tables to:

The first option is to use the Specific Table dropdown to select the table.

The second is to use the Tables Matching Search option in which you specify the Search Path and Search Text to select the table or tables that match the search criteria. This option is very useful if you have a workflow that creates a series of commonly named tables that that have been saved appending the date.

Table Dymanic Selection

4.4 - Table Copy

Create a copy of a data table

Description

Create a copy of a data table.

Source and Target

Source And Target

To establish the source and target tables, first select the data table to be extracted from using the Source Table dropdown menu. Next, select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

When performing the copy, Analyze will first check to see if the target data table already exists. If it does, no action will be performed unless the Allow Overwriting Existing Table checkbox is selected. If this is the case, the target table will be overwritten.

Examples

4.5 - Table Cross Join

Use this function to perform an cross join between two data tables

Description

Use, as you might have expected, to perform a cross join operation on 2 data tables, combining them into a single data table without join key(s).

For more details on cross join methodology, see here: Wikipedia SQL Cross Join

Table Data Selection

Table Source

Specify the source data table by selecting it from the dropdown menu.

Source Columns

Specify any columns to be included here. Selecting the Inspect Source and Populate Source Mapping Table buttons will make these columns available for the join operation.

Select Subset of Source Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples.

Table Source

Table Output

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Target Output Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Output Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

4.6 - Table Drop

Drop/Delete a data table

Description

Drop/delete a data table.

Table Selection

Table Selection

There are two options for selecting the table or in the second option tables to:

The first option is to use the Specific Table dropdown to select the table.

The second is to use the Tables Matching Search option in which you specify the Search Path and Search Text to select the table or tables that match the search criteria. This option is very useful if you have a workflow that creates a series of commonly named tables that that have been saved appending the date.

Table Dymanic Selection

4.7 - Table Extract

This function helps to extract data from one table and place it in another

Description

Used to extract data from an existing Analyze data table into another data table. Examples include, but are not limited to, the following:

  • Sort
  • Group
  • Summarization
  • Filter/Subset Rows
  • Drop Extra Columns
  • Math Operations
  • String Operations

Extract Parameters

Source and Target

Source And Target

To establish the source and target tables, first select the data table to be extracted from using the Source Table dropdown menu. Next, select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Table Data Selection

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

4.8 - Table Faker

This function generates fake data

Description

Table Faker generates fake data.

Address

| Generator | Optional Arguments | | Building Number | | | City | | | City Suffix | | | Country | | | Country Code | “representation”=”alpha-2” | | Full Address | | | Latitude | | | Longitude | | | Military DPO | | | Postal Code | | | Postal Code Plus 4 | | | State | | | State Abbreviation | | | Street Address | | | Street Name | | | Street Suffix | |

Automotive

| Generator | Optional Arguments | | License Plate | |

Barcode

| Generator | Optional Arguments | | EAN13 | | | EAN8 | |

Colors

| Generator | Optional Arguments | | Color Name | | | Hex Color | | | RGB Color | | | RGB CSS Color | | | Safe Color Name | | | Safe Hex Color | |

Company

| Generator | Optional Arguments | | Company Catch Phrase | | | Company Name | | | Company Suffix | |

Credit Card

| Generator | Optional Arguments | | Expriration Date | “start”=”now”“end”=”+10y”## ‘12/20’ | | Full | “card_type”=null | | Number | “card_type”=null | | Provider | “card_type”=null | | Security Code | “card_type”=null |

Currency

| Generator | Optional Arguments | | Code | |

Date Time

| Generator | Optional Arguments | | AM/PM | | | Century | | | Date | “pattern”:”%Y-%m-%d”“end_datetime”:null | | Date Time | “tzinfo”:null“end_datetime”=null | | Date Time this Century | “before_now”=true“after_now”=false“tzinfo”=null | | Date Time this Decade | “before_now”=true“after_now”=false“tzinfo”=null | | Date Time this Month | “before_now”=true“after_now”=false“tzinfo”=null | | Date Time this Year | “before_now”=true“after_now”=false“tzinfo”=null | | Day of Month | | | Day of Week | | | ISO8601 Date Time | “tzinfo”=null“end_datetime”=null | | Month | | | Month Name | | | Past Date (Last 30 Days) | “start_date”=”-30d”“tzinfo”=null | | Timezone | | | Unix Time | “end_datetime”=null“start_datetime”=null | | Year | |

File

| Generator | Optional Arguments | | File Extension | “category”=null | | File Name | “category”=null“extension”=null | | File Path | “depth”=”1”“category”=null“extension”=null | | Mime Type | “category”=null |

Internet

| Generator | Optional Arguments | | Company Email | | | Domain Name | | | Domain Word | | | Email | | | Free Email | | | Free Email Domain | | | Image URL | “width”=null“height”=null | | IPv4 | “network”=false“address_class”=”no”“private”=null | | IPv6 | “network”=false | | MAC Address | | | Safe Email | | | Slug | | | TLD | | | URI | | | URL | “schemes”=null | | URL Extension | | | URL Page | | | User Name | |

ISBN

| Generator | Optional Arguments | | ISBN10 | “eparator”=”-“ | | ISBN13 | “eparator”=”-“ |

Job

| Generator | Optional Arguments | | Job Name | |

Lorem

| Generator | Optional Arguments | | Paragraph | “nb_sentences”=”3”“variable_nb_sentences”=true“ext_word_list”=null | | Paragraphs | “nb”=”3”“ext_word_list”=null | | Sentence | “nb_words”=”6”“variable_nb_words”=true“ext_word_list”=null | | Sentences | “nb”=”3”“ext_word_list”=null | | Text | “max_nb_chars”=”200”“ext_word_list”=null | | Word | “ext_word_list”=null | | Words | “nb”=”3”“ext_word_list”=null |

Misc

| Generator | Optional Arguments | | Binary | “length”=”1048576” | | Boolean | “chance_of_getting_true”=”50” | | Null Boolean | | | Locale | | | Language Code | | | MD5 | “raw_output”=false | | Password | “length”=”10”“special_chars”=true“digits”=true“upper_case”=true“lower_case”=true | | Random String | | | SHA1 | “raw_output”=false | | SHA256 | “raw_output”=false | | UUID4 | |

Numeric

| Generator | Optional Arguments | | Big Serial (Auto Increment) | | | Random Float | | | Random Float in Range | | | Random Integer | | | Random Integer in Range | | | Random Numeric | | | Random Percentage (0 – 1) | | | Random Percentage (0 – 100) | | | Serial (Auto Increment) | |

Person

| Generator | Optional Arguments | | First Name | | | First Name Female | | | First Name Male | | | Full Name | | | Full Name Female | | | Full Name Male | | | Last Name | | | Last Name Female | | | Last Name Male | | | Prefix | | | Prefix Female | | | Prefix Male | | | Suffix | | | Suffix Female | | | Suffix Male | |

Phone

| Generator | Optional Arguments | | Phone Number | | | ISDN | |

Tax

| Generator | Optional Arguments | | EIN | | | Full SSN | | | ITIN | |

User Agent

| Generator | Optional Arguments | | Chrome | “version_from”=”13”“version_to”=”63”“build_from”=”800”“build_to”=”899” | | Firefox | | | Full User Agent | | | Internet Explorer | | | Linux Platform Token | | | Linux Processor | | | Mac Platform Token | | | Mac Processor | | | Opera | | | Safari | | | Windows Platform Token | |

Special Generators

While these two generators do not have arguments, the options they provide act similarly to arguments.

Pattern Generator:

| Number | Format | Output | Description | | 3.1415926 | {:.2f} | 3.14 | 2 decimal places | | 3.1415926 | {:+.2f} | +3.14 | 2 decimal places with sign | | -1 | {:+.2f} | -1.00 | 2 decimal places with sign | | 2.71828 | {:.0f} | 3 | No decimal places | | 5 | {:0>2d} | 05 | Pad number with zeros (left padding, width 2) | | 5 | {:x<4d} | 5xxx | Pad Number with x’s (right padding, width 4) | | 10 | {:x<4d} | 10xx | Pad number with x’s (right padding, width 4) | | 1000000 | {:,} | 1,000,000 | Number format with comma separator | | 0.25 | {:.2%} | 25.00% | Format percentage | | 1000000000 | {:.2e} | 1.00e+09 | Exponent notation | | 13 | {:10d} | 13 | Right aligned (default, width 10) | | 13 | {:<10d} | 13 | Left aligned (width 10) | | 13 | {:^10d} | 13 | Center aligned (width 10) |

Random Choice:

In order to provide the options for random choice, simply put your options in quotes and seperate each option with a comma. So a string of random choice options would appear like this: “x”,”y”,”z”

Here, the “Key Word Args/Pattern/Choices” column of the “pattern” row contains a sentence with several references. The first reference equation ( {percentage0-100:.2f}% ) points to the “percentage0-100” row which will generate a random equation. Therefore, the random percentage produced by the “percentage0-100” row will be automatically inserted into the sentence. The reference equation {first_name} points to the row titled “first_name” which will randomly generate a first name, and this name will be automatically inserted into the sentence. The last reference equation ( {randomn_choice} ) operates the same as the other two.

With this, when the pattern generator is run, you will recieve the following results.

4.9 - Table In-Place Delete

Performs a delete on the table using the specified filter conditions

Description

Performs a delete on the table using the specified filter conditions. The operation is performed on the designated table directly so no additional tables are created. Only the rows that meet the filter criteria are deleted. This may be an effective approach when encountering concerns related to data size.

Delete Parameters

Select the Source table for deleting from the dropdown list. This list includes all Project and Workflow data tables.

Table In-Place Delete

Data Filters for Delete

Table In-Place Delete

Examples

4.10 - Table In-Place Update

Performs an update on the table using the specified filter conditions and value settings

Description

Performs an update on the table using the specified filter conditions and value settings. The operation is performed directly on the designated table, so no additional tables are created. This may be an effective approach when concerns of data size are encountered.

Table Selection

Select the Source table for updating from the dropdown list. This list includes all Project and Workflow data tables.

Examples

In this example the Account will be set to 41000 when the Version is equal to "Actual" in "Ledger Value to be allocated".

Table In-Place Update

Table In-Place Update

4.11 - Table Inner Join

Use this function to perform an inner join between two data tables

Description

Use, as you might have expected, to perform an inner join operation on 2 data tables, combining them into a single data table based upon the specified join key(s).

For more details on inner join methodology, see here: Wikipedia SQL Inner Join

Table Data Selection

Table Source

Specify the source data table by selecting it from the dropdown menu.

Source Columns

Specify any columns to be included here. Selecting the Inspect Source and Populate Source Mapping Table buttons will make these columns available for the join operation.

Select Subset of Source Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples.

Table Source

Table Output

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Join Map

Table Join Map

Specify join conditions. Using the Guess button will find all matching columns from both Table 1 as well as Table 2. To add additional columns manually, right click anywhere in the section and select either Insert Row or Append Row, to add a row prior to the currently selected row or to add a row at the end, respectively. Then, type the column names to match from Table 1 to Table 2. To remove a field from the Join Map, simply right-click and select Delete.

Target Output Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Output Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

Join Automobile Manufacturers with Models

In this example, consider the following source data tables. First is a list of automobile manufacturers.

Mfg_IDManufacturer
1Aston Martin
2Porsche
3Lamborghini
4Ferrari
5Koenigsegg

Next is a list of automobile models with a manufacturer ID. Note that there are several models with no manufacturer.

ModelNameMfg_ID
Aventador3
Countach3
DBS1
Enzo4
One-771
Optimus Prime
Batmobile
Agera5
Lightning McQueen

To get a list of models by manufacturer, it makes sense to join on Mfg_ID.

First, specify parameters for Table 1 Data Selection. The source data table is selected and all columns are listed.

Next, specify parameters for Table 2 Data Selection. Once again, the source data table is selected and all columns are listed.

Finally, the join conditions are set in the Table Output tab. Using the Guess button, Analyze properly identifies the Mfg_ID column to use as the Join Key. Lastly, the

Target Output Columns are specified automatically using the Propagate button. This effectively includes all columns from all tables, with all join columns included only a single time. Note that the columns are sorted alphabetically, first by Manufacturer and next by ModelName.

As expected, the final output only includes values which had a match in both tables. As such, Porsche does not show up because it had no models. Likewise, the

Batmobile had no manufacturer (it was a custom job), so it’s not included.

4.12 - Table Lookup

Similar to Microsoft Excel, this workflow function also increases process performance

Description

If you are a regular user of the vlookup function in Microsoft Excel, the Table Lookup transform should feel very familiar. It’s used to perform essentially the same function. Unlike the Microsoft Excel version, the PlaidCloud Analyze Table Lookup transform offers greater flexibility, especially allowing for matching on and returning multiple columns.

Table Data Selection

Table Source

Specify the source data table by selecting it from the dropdown menu.

Source Columns

Specify any columns to be included here. Selecting the Inspect Source and Populate Source Mapping Table buttons will make these columns available for the join operation.

Select Subset of Source Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples.

Table Source

Table Output

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Join Map

Table Join Map

Specify join conditions. Using the Guess button will find all matching columns from both Table 1 as well as Table 2. To add additional columns manually, right click anywhere in the section and select either Insert Row or Append Row, to add a row prior to the currently selected row or to add a row at the end, respectively. Then, type the column names to match from Table 1 to Table 2. To remove a field from the Join Map, simply right-click and select Delete.

Target Output Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Output Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

Lookup Product Dimension Information

In this example, the modeler needs information from the product dimension table to make sense of the order fact table. As such, the Import Order Fact table is selected as the Source Table. The Import Product Dim table contains the desired lookup information, so it’s selected as the Lookup Table Source. Although available, no filters are applied to the lookup data table (nor any other data tables, for that matter).

In the Table Data Selection section, all columns are mapped from the source data table to the target data table.

No Data Filters are applied to either source or target data.

Lastly, the source data table is matched to the lookup data table using the Product_ID field found in each table. Only the Product_Description and Unit_Cost columns are appended to the target data table, with Unit_Cost being renamed to Retail_Unit_Cost in the process.

In the resulting target data table, the Product_Description and Retail_Unit_Cost columns have been added, based on matching values in the Product_ID column.

4.13 - Table Melt

Flip columns to rows

Description

Used to convert short, wide data tables into long, narrow data tables. Selected columns are transposed, with the column names converted into values across multiple rows.

Perhaps the easiest example to understand is to think of a data table with months listed as column headers:

Table Melt Input

Melting this data table would convert all of the month columns into rows.

Table Melt Output

By specifying which columns to transpose and which columns to leave alone, this becomes a powerful tool. Making this conversion in other ETL tools could require a dozen more steps.

Source and Target Parameters

Table Melt Source Target

Source and Target

To establish the source and target, first select the data table to be extracted from the Source Table dropdown menu.

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Pre-Melt Table Data Selection

Table Pre-Melt

This section is a bit different from the standard Table Data Selection. Basically this is used to specify which columns are to be used in the Melt operation. This includes ID columns and Variable/Value columns.

For more details regarding Table Data Selection, see details here: Table Data Selection

Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset of Source Data

Any valid Python expression is acceptable to subset the data. Please see Expressions

for more details and examples.

Apply Secondary Filter To Result Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples

Final Data Table Slicing (Limit)

To limit the data, simply check the Apply Row Slicer box and then specify the following:

  • Initial Rows to Skip: Rows of data to skip (column header row is not included in count)
  • End at Row: Last row of data to include. This is different from simply counting rows at the end to drop

Melt Layout

Table Melt Layout

There is a Guess Layout button available to allow Analyze a first crack at specifying ID columns. By default, all text (data type of String) columns are placed in the Keys section. Numeric columns are not placed into Keys by default, but they are allowed to be there based on the model’s needs.

Columns to Use as IDs (Keys)

ID columns are the columns which remain in tact. These columns are effectively repeated for every instance of a variable/value combination. For a monthly table, this would result in 12 repetitions of ID columns.

ID columns can be added automatically or manually. To add the columns automatically, use the aforementioned Guess Layout button. To add additional columns manually, right click anywhere in the section and select either Insert Row or Append Row, to add a row prior to the currently selected row or to add a row at the end, respectively. Then, type the column name to use as an ID.

To remove a field from the IDs, simply right-click and select Delete.

Melt Result Column Naming

There are 2 values to specify. Both of these values will become column names in the target data table.

  • Variable Column Name: As specified in the transform, The variable names are derived from the current source column names. Essentially, specify a column name which will represent the data originally represented in the source data table columns.
  • Value Column Name: Specify a column name to represent the data represented within the source data table. Typically this will be a numerical unit: Dollars, Pounds, Degrees, Percent, etc.

Examples

In the abouve documentation.

4.14 - Table Outer Join

Combine data tables using specified join key(s)

Description

Use, as you might have expected, to perform a full outer join operation on 2 data tables, combining them into a single data table based upon the join key(s) specified.

For more details on outer join methodology, see here: Wikipedia SQL Full Outer Join

Table Data Selection

Table Source

Specify the source data table by selecting it from the dropdown menu.

Source Columns

Specify any columns to be included here. Selecting the Inspect Source and Populate Source Mapping Table buttons will make these columns available for the join operation.

Select Subset of Source Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples.

Table Source

Table Output

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Join Map

Table Join Map

Specify join conditions. Using the Guess button will find all matching columns from both Table 1 as well as Table 2. To add additional columns manually, right click anywhere in the section and select either Insert Row or Append Row, to add a row prior to the currently selected row or to add a row at the end, respectively. Then, type the column names to match from Table 1 to Table 2. To remove a field from the Join Map, simply right-click and select Delete.

Target Output Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Output Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

Join Automobile Manufacturers with Models

In this example, consider the following source data tables. First is a list of automobile manufacturers.

Mfg_IDManufacturer
1Aston Martin
2Porsche
3Lamborghini
4Ferrari
5Koenigsegg

Next is a list of automobile models with a manufacturer ID. Note that there are several models with no manufacturer.

ModelNameMfg_ID
Aventador3
Countach3
DBS1
Enzo4
One-771
Optimus Prime
Batmobile
Agera5
Lightning McQueen

To get a list of models by manufacturer, it makes sense to join on Mfg_ID. By leveraging outer join concepts, the output will also be able to show those items which do not have any matches.

First, specify parameters for Table 1 Data Selection. The source data table is selected and all columns are listed.

Next, specify parameters for Table 2 Data Selection. Once again, the source data table is selected and all columns are listed.

Finally, the join conditions are set in the Table Output tab. Using the Guess button, Analyze properly identifies the Mfg_ID column to use as the Join Key. Lastly, the

Target Output Columns are specified automatically using the Propagate button. This effectively includes all columns from all tables, with any join columns obviously only being included a single time. Note that the columns are sorted alphabetically, first by Manufacturer and next by ModelName.

As expected, the final output includes all rows from both tables, whether they had a match in both tables or not. As such, this time Porsche does indeed show up despite having no models. Additionally, Batmobile, Lightning McQueen, and Optimus Prime are included in the results even though none of them have a manufacturer. Besides, who can say ‘No’ to them?

4.15 - Table Pivot

Flip rows to columns

Description

Used to convert long, narrow data tables into short, wide data tables. Selected columns are transposed, with the column names converted into values across multiple columns.

Perhaps the easiest example to understand is to think of a data table with months listed as rows:

Table Pivot Input

Pivoting this data table would convert all of the month rows into columns.

Table Pivot Output

By specifying which columns to transpose and which columns to leave alone, this becomes a powerful tool. Making this conversion in other ETL tools could require a dozen more steps.

Source and Target Parameters

Table Pivot Source Target

Source Table Selection

To establish the source and target, first select the data table to be extracted from using the dropdown menu.

Traget Table Selection

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Pivot Column Selection

The Category Column to Transform into Column Headers is where you specigy the column in Source Table that will be pivoted to rows. The Value Column ti Pivot to Column Vales is the column that containes the values in the Source Table. The Value Aggregation Option is where you specify how you want the data to aggregate.

Table Data Selection

Table Pivot Data Selection

The Table Data Selection tab is used to map columns from the source data table to the target data table. All source columns on the left side of the window are automatically mapped to the target data table depicted on the right side of the window. Using the Inspect Source menu button, there are a few additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

In addition to each of these options, each choice offers the ability to preview the source data.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

To rearrange columns in the target data table, select the desired column(s), then right click and select Move to Top, Move Up, Move Down, or Move to Bottom.

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return distinct results only.

To aggregate results, select the Summarize menu option. This will toggle a set of drop down boxes for each column in the target data table. The following summarization options are available:

  • Group by (set as default)
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Mean
  • Median
  • Mode
  • Std Dev
  • Variance
  • Product
  • Absolute Val
  • Quantile
  • Skew
  • Kurtosis
  • Mean Abs Dev
  • Cumulative Sum
  • Cumulative Min
  • Cumulative Max
  • Cumulative Product

For more aggregation details, see the Analyze overview page here.

Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset of Data

Any valid Python expression is acceptable to subset the data. Please see Expressions

for more details and examples.

Apply Secondary Filter To Result Data

Any valid Python expression is acceptable to subset the data. Please see Expressions for more details and examples

Final Data Table Slicing (Limit)

To limit the data, simply check the Apply Row Slicer box and then specify the following:

  • Initial Rows to Skip: Rows of data to skip (column header row is not included in count)
  • End at Row: Last row of data to include. This is different from simply counting rows at the end to drop

4.16 - Table Union All

Access history to all created workflow data tables

Description

Use to combine multiple data tables with the same column structure into a single data table. For example, time series data is a prime candidate for this transform. The result is all of the records from the combined tables.

Sources

The Sources section serves as a collection of all data tables to append together. Typically, all of the data tables will have the same (or similar) column structure. There are two buttons available to add a data table to the list:

  • Insert Row
  • Append Row

Additionally, right-clicking in the Select Source to Edit window will display the same options. Right-clicking on a table already added will also display the Delete option.

To execute the transform properly, there will need to be one entry in the Sources section for every source data table to append together. These entries are listed in the order in which they will be appended. To adjust the order, right-clicking on a table will display the following options:

  • Move Down (if applicable)
  • Move To Bottom (if applicable)
  • Move Up (if applicable)
  • Move To Top (if applicable)

By default, each source is named New Table, but the modeler is encouraged to provide descriptive names by double-clicking the name and renaming accordingly.

Target Table

By default, the Target Table is left blank. Before naming, note that data tables must follow Linux naming conventions. As such, we recommend that names only consist of alphanumeric characters. Analyze will automatically scrub any invalid characters from the name. Additionally, it will limit the length to 256 characters, so be concise!

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Table Data Selection Tab

Source Table

Table Selection

There are two options for selecting the table or in the second option tables to:

The first option is to use the Specific Table dropdown to select the table.

The second is to use the Tables Matching Search option in which you specify the Search Path and Search Text to select the table or tables that match the search criteria. This option is very useful if you have a workflow that creates a series of commonly named tables that that have been saved appending the date.

Table Dymanic Selection

Source Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

4.17 - Table Union Distinct

Consolidate data tables

Description

Use to combine multiple data tables with the same column structure into a single data table. For example, time series data is a prime candidate for this transform. The result is always the distinct set of records after combining the data.

Sources

The Sources section serves as a collection of all data tables to append together. Typically, all of the data tables will have the same (or similar) column structure. There are two buttons available to add a data table to the list:

  • Insert Row
  • Append Row

Additionally, right-clicking in the Select Source to Edit window will display the same options. Right-clicking on a table already added will also display the Delete option.

To execute the transform properly, there will need to be one entry in the Sources section for every source data table to append together. These entries are listed in the order in which they will be appended. To adjust the order, right-clicking on a table will display the following options:

  • Move Down (if applicable)
  • Move To Bottom (if applicable)
  • Move Up (if applicable)
  • Move To Top (if applicable)

By default, each source is named New Table, but the modeler is encouraged to provide descriptive names by double-clicking the name and renaming accordingly.

Target Table

By default, the Target Table is left blank. Before naming, note that data tables must follow Linux naming conventions. As such, we recommend that names only consist of alphanumeric characters. Analyze will automatically scrub any invalid characters from the name. Additionally, it will limit the length to 256 characters, so be concise!

Target Table

Table Target

To establish the target table select either an existing table as the target table using the Target Table dropdown or click on the green "+" sign to create a new table as the target.

Table Creation

When creating a new table you will have the option to either create it as a View or as a Table.

Views:

Views are useful in that the time required for a step to execute is significantly less than when a table is used. The downside of views is they are not a useful for data exploration in the table Details mode.

Tables:

When using a table as the target a step will take longer to execute but data exploration in the Details mode is much quicker than with a view.

Table Data Selection Tab

Source Table

Table Selection

There are two options for selecting the table or in the second option tables to:

The first option is to use the Specific Table dropdown to select the table.

The second is to use the Tables Matching Search option in which you specify the Search Path and Search Text to select the table or tables that match the search criteria. This option is very useful if you have a workflow that creates a series of commonly named tables that that have been saved appending the date.

Table Dymanic Selection

Source Columns

Data Mapper Configuration

Table Data Mapper

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

4.18 - Table Upsert

Perform an update of existing records or append new ones

Description

Performs an update of existing records and append new ones.

Upsert Parameters

Source And Target

To establish the source and target tables, first select the data table to be extracted from using the Source Table dropdown menu. Next, select an existing table as the target table using the Target Table dropdown.

Source Table Data Selection

Table Upsert

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Update Key

In order for the Upsert to update the existing and append new records you need to select the columns in the data that create a unique key.

Source Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

5 - Dimension Steps

5.1 - Dimension Clear

Clears the contents of a dimension including structure, values, aliases, properties, and alternate hierarchies

Description

Clears the contents of a dimension including structure, values, aliases, properties, and alternate hierarchies

Dimension Clear

Dimension Selection

Specify Dimension Dynamically

If dimensions or paths were created dynamically then same variables can be used to clear them. Using variables in the clear process is useful since it eliminates the need to update the Dimension Clear step manually on a periodic basis.

An example that uses the current_month variable to dynamically clear the Materials dimension:

/Dimensions/{current_month}/Products/Materials

Use Specific Dimension

Use the dropdown menu to select a specific dimension to clear.

5.2 - Dimension Create

Creates a dimension for use and loading

Description

Creates a dimension for use and loading

Dimension Create

Dimension To Create

Name

You can either use a specific name for the dimension to be created or include variables for dynamic naming.

Variables are useful when dimensions are updated on a periodic basis and retaining the historical view is desired.

An example that uses the current_month variable to dynamically name the dimension:

dimension_name_{current_month}

Path

Paths let you create folder structures that the dimensions are are stored in. You can use variables here as well to make the folder structure dynamic. An example that uses the current_month variable to dynamically name a folder:

/Dimensions/{current_month}/Product/

Memo

The Memo field is used a place to store comments or notes.

5.3 - Dimension Delete

Deletes a dimension along with all associated structure, values, properties, aliases, and alternate hierarchies

Description

Deletes a dimension along with all associated structure, values, properties, aliases, and alternate hierarchies

Dimension Clear

Dimension Selection

Specify Dimension Dynamically

If dimensions or paths were created dynamically then same variables can be used to delete them. Using variables in the delete process is useful since it eliminates the need to update the Dimension Delete step manually on a periodic basis.

An example that uses the current_month variable to dynamically delete the Materials dimension:

/Dimensions/{current_month}/Products/Materials

Use Specific Dimension

Use the dropdown menu to select a specific dimension to delete.

5.4 - Dimension Load

Load and update dimensions using data

Description

Load and update dimensions using data from PlaidCloud tables.

Dimension Load

Dimension Selection

Specify Dimension Dynamically

To specify a dimension dynamically you include project and or local variables in the name.

Variables are useful when dimensions are updated on a periodic basis and retaining the historical view is desired.

An example that uses the current_month variable to dynamically load the dimension:

dimension_name_{current_month}

Use Specific Dimension

To use a specific dimension select the dimension using the drop down menu.

Load to Alternate Hierarchy

To load an Alternate Hierarchy fist select the dimension either dynamically or specifically, click the Load to Alternate Hierarchy checkbox and enter the name of the alternate hierarchy to be loaded.

Source Table

Dynamic

To specify the source table dynamically click the Dynamic Checkbox and enter the table name including the project and or local variables in the name.

Static

To use a specific source table select the table using the drop down menu.

Dimension Properties And Table Layout

Default Consolidation Type

There are three options for consolidation types:

  • "+": Aggregates values in the dimension.
  • "-": Subtracts values in the dimension.
  • "~": No aggregation is performed in the dimension.

Table Column Format

There are two options for fomatting the Source Table when loading a dimension.

Parent Child

In a Parent Child table there are two columns that represent the dimensions structure, Parent and Child.

EXAMPLE PARENT CHILD

PARENTCHILDConsolidation Type
Parent AllParent 1~
Parnet AllParent 2~
Parent 1Child 1+
Parent 2Child 2+
Child 1Child 3+
Child 1Child 4+
Child 2Child 5+

Flattened Levels

In a Flattend Level table there are an infinte number of columns with each column representing a level of the dimension.

EXAMPLE FLATTENED LEVELS

Level 1Level 2Level 3Level 4
Parent AllParent 1Child 1Child 3
Parent AllParent 1Child 1Child 4
Parent AllParent 2Child 2Child 5

Column Mapping

Using the Inspect Source menu button populates the Source Column in the data mapper. Once the Source Column has been populated use the Kind drop down menu to map the Source Columns to the appropriate column type.

5.5 - Dimension Sort

Sort dimensions automatically

Description

Sort dimensions automatically.

Dimension Clear

Dimension Selection

Specify Dimension Dynamically

If dimensions or paths were created dynamically then same variables can be used to sort them. Using variables in the sort process is useful since it eliminates the need to update the Dimension Sort step manually on a periodic basis.

An example that uses the current_month variable to dynamically sort the Materials dimension:

/Dimensions/{current_month}/Products/Materials

Use Specific Dimension

Use the dropdown menu to select a specific dimension to sort.

6 - Document Steps

6.1 - Compress PDF

Applies a PDF compression process to shrink the PDF size

Documentation coming soon...

6.2 - Concatenate Files

Concatenates two or more documents together

Documentation coming soon...

6.3 - Convert Document Encoding

Concatenates files to form a single file.

Description

Concatenates files to form a single file.

Examples

Create a source input, select the input file and browse for the file within that location. Select the desired output location, and browse to selected the desired location for the file. Save and run.

6.4 - Convert Document Encoding to ASCII

Updates file encoding and converts all characters to ASCII

Description

Updates file encoding and converts all characters to ASCII. This is particularly useful if the source of information has mixed encodings or other tools don’t support certain encodings.

Examples

Select the input file and browse for the file within that location. Select the desired output location, and browse to select the desired location for the file. Save and run.

6.5 - Convert Document Encoding to UTF-8

Updates file encoding and converts all characters to UTF-8

Description

Updates file encoding and converts all characters to UTF-8. This is particularly useful if the information source has mixed encodings or other tools don’t support certain encodings.

Examples

Select the input file and browse for the file within that location. Select the desired output location, and browse then select the desired location for the file. Save and run.

6.6 - Convert Document Encoding to UTF-16

Updates file encoding and converts all characters to UTF-16

Description

Updates file encoding and converts all characters to UTF-16. This is particularly useful if the information source has mixed encodings or other tools don’t support certain encodings.

Examples

Select the input file and browse for the file within that location. Select the desired output location, and browse then select the desired location for the file. Save and run.

6.7 - Convert Image to PDF

Converts an image to a PDF document

Documentation coming soon...

6.8 - Convert PDF or Image to JPEG

Converts a PDF or other image format to JPEG image

Documentation coming soon...

6.9 - Copy Document Directory

Copy entire directory in PlaidCloud Document

Description

Copy an entire directory within PlaidCloud Document.

Copy Directory

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the directory you’d like to copy.

Select Destination

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the destination for the copied directory.

If desired, the copied directory can be given a new name. To do so, simply check the Rename the Copied Folder to: box and type in a new name.

Examples

No examples yet...

6.10 - Copy Document File

Copy a single file within PlaidCloud Document.

Description

Copy a single file within PlaidCloud Document.

File To Copy

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the file you’d like to copy.

Select Destination

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the destination for the copied file.

By default, Analyze will not allow files to be overwritten. Instead, a numerical suffix will be added to each subsequent copy.

To overwrite the existing file, simply check the Allow Overwriting Existing File box.

To rename the file, check the Rename the copied file to box and type in a new name.

Examples

No examples yet...

6.11 - Create Document Directory

Use PlaidCloud Document to create a new Document Directory

Description

Create a new directory within PlaidCloud Document.

Where to Create New Folder

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the parent directory.

New Folder Name

Type the name for the new directory.

Examples

No examples yet...

6.12 - Crop Image to Headshot

Automatic headshot cropping of an image

Documentation coming soon...

6.13 - Delete Document Directory

Delete an existing directory from within PlaidCloud Document

Description

Delete an existing directory from within PlaidCloud Document.

Folder to Delete

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the directory to delete.

Examples

No examples yet...

6.14 - Delete Document File

Delete an existing file from within PlaidCloud Document

Description

Delete an existing file from within PlaidCloud Document.

File to Delete

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the file to delete.

Examples

No examples yet...

6.15 - Document Text Substitution

Perform text substitution within a specified file

Description

Performs text substitution in the specified file.

Examples

No examples yet...

6.16 - Fix File Extension

Determines the proper file extension and renames the file

Documentation coming soon...

6.17 - Merge Multiple PDFs

Merges multiple PDFs into a single PDF document

Documentation coming soon...

6.18 - Rename Document Directory

Rename an existing directory in PlaidCloud Document

Description

Rename an existing directory within PlaidCloud Document.

Folder to Rename

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the directory to be renamed.

Rename To

Type the new name for the directory.

Examples

No examples yet...

6.19 - Rename Document File

Rename an existing file in PlaidCloud Document

Description

Rename an existing file within PlaidCloud Document.

File to Rename

First, select the appropriate account from the dropdown menu.

Next, press the Browse button to select the file to be renamed.

Rename To

Type the new name for the file.

Examples

No examples yet...

7 - Notification Steps

7.1 - Notify Distribution Group

Send an email to a PlaidCloud distribution group

Description

Send an email notification to a PlaidCloud distribution group. Messages are sent from info@tartansolutions.com. No outbound setup is required.

Select PlaidCloud Distribution List

Select a single distribution list from the drop down menu. Distribution lists can be created using Tools. For details on creating a distribution list, see here: PlaidCloud Tools – Distro.

Message

Specify Subject and Body as desired.

Please note that both Project Variables and Workflow Variables are available for use with this transform, in both the subject line and the message body.

Additionally, standard HTML code is permitted in the body to further customize the look of the email messages.

Examples

In this example, all of the system variables are used. Additionally, there is a small bit of HTML used to format the first line of the body. Executing this transform will send the following email to all members specified in the distribution group:

7.2 - Notify Agent

Notify a PlaidCloud Agent

Description

Notify a PlaidCloud Agent.

Examples

No examples yet...

7.3 - Notify Via Email

Send email notifications

Description

Send email notifications. Messages are sent from info@tartansolutions.com email account. No outbound setup is required.

Email Addresses

Specify any number of email recipients. Acceptable delimiters include semicolon (;) and comma (,).

Message

Specify Subject and Body as desired.

Please note that both Project Variables and Workflow Variables are available for use with this transform, in both the subject line and the message body.

Additionally, standard HTML code is permitted in the body to further customize the look of the email messages.

Attachments

Attaching files to emails is very simple. Select a file or folder from Document to attach. If a folder is selected, the contents of the folder will be attached as individual files. Variable substitution works with paths for better control of file attachments when sending out personalized emails.

Examples

In this example, all of the system variables are used. Additionally, there is a small bit of HTML used to format the first line of the body. Executing this transform will send the following email:

7.4 - Notify Via Log

Write a message to the Analyze workflow log

Description

Write a message to the Analyze workflow log.

Message Parameters

Type the desired message to write to the log. Then select one of three severity levels from the following:

  • Information
  • Warning
  • Error

Please note that both Project Variables and Workflow Variables are available for use with this transform.

Examples

In this example, executing this transform will append an Information item to the log, stating Write a message to the workflow log. I believe you have my stapler, Demo.

7.5 - Notify via Microsoft Teams

Send notifications to Microsoft Teams channels

Adding Microsoft Teams notifications from a workflow is a two part process. The two parts are:

  1. Create a Microsoft Teams external connection
  2. Add Microsoft Teams notification steps to your workflows

Add Microsoft Teams Notification Step to Workflow

Adding Microsoft Teams notification steps to the workflow is the same as adding other steps to a workflow. Upon adding the step, open the step configuration, complete the form, and save it. You can now test your Microsoft Teams notification.

Formatting the Microsoft Teams Message

Teams has many formatting options including adding images and mentioning users. Please reference the Teams Message Text Formatting documentation for details.

Create Microsoft Teams External Connection

This is a one-time setup to allow PlaidCloud to send Microsoft Teams notifications on your behalf. Microsoft Teams allows creation of a Webhook App (a generic way to send a notification over the internet). After creating the Webhook App in Microsoft Teams, add the supplied credentials to PlaidCloud to allow its use.

Microsoft Teams Webhook App Creation

These steps will need to be performed by a Microsoft Teams administrator. Follow the steps outlined here for Creating Incoming Webhook (Microsoft Teams Documentation).

PlaidCloud External Connection Setup

These steps will need to be performed by a PlaidCloud workspace administrator with permissions to create External Data Connections. Follow these steps to create the connection:

  1. Navigate to Analyze > Tools > External Data Connections
  2. Under the + New Connection selection, pick Microsoft Teams Webhook
  3. Complete the name, description, and paste in the webhook url generated during the webhook creation above. The name provided here will be shown as the selection in the workflow step so it should be descriptive if possible.
  4. Select the + Create button

Examples

No examples yet...

7.6 - Notify via Slack

Send Slack notifications

Adding Slack notifications from a workflow is a two part process. The two parts are:

  1. Create a Slack Webhook external connection
  2. Add Slack notification steps to your workflows

Add Slack Notification Step to Workflow

Adding Slack notification steps to the workflow is the same as adding other steps to a workflow. Upon adding the step, open the step configuration, complete the form, and save it. You can now test your Slack notification.

Formatting the Slack Message

Slack has many formatting options including adding images and mentioning users. Please reference the Slack Text Formatting documentation for details.

Create Slack Webhook External Connection

This is a one-time setup to allow PlaidCloud to send Slack notifications on your behalf. Slack allows creation of a Webhook App (a generic way to send a notification over the internet). After creating the Webhook App in Slack, add the supplied credentials to PlaidCloud to allow its use.

Slack Webhook App Creation

These steps will need to be performed by a Slack administrator. Follow these steps to create a Slack Webhook App:

  1. From Slack, open the workspace control menu and select Settings & administration > Manage Apps
  2. Select Custom Integrations from the Apps category list
  3. Select Incoming Webhooks from the list of apps
  4. Select the Add to Slack button
  5. On the next screen, select the Slack Channel you wish to post the messages and continue. This is the default channel that will be used but it can be overridden in each notification including sending DMs to specific individuals.
  6. Copy the webhook URL displayed. This will be used later so keep it in a safe place. It will look something like this: https://hooks.slack.com/services/T04QZ1435/G02TGBFTOP8/K9GZrR2ThdJz1uSiL9YeZxoR
  7. You can customize the appearance, name, and emoji before saving. These customizations are only the defaults and these can be overridden on each notification step within a PlaidCloud workflow.

PlaidCloud External Connection Setup

These steps will need to be performed by a PlaidCloud workspace administrator with permissions to create External Data Connections. Follow these steps to create the connection:

  1. Navigate to Analyze > Tools > External Data Connections
  2. Under the + New Connection selection, pick Slack Webhook
  3. Complete the name, description, and paste in the webhook url provided in step 6 above. The name provided here will be shown as the selection in the workflow step so it should be descriptive if possible.
  4. Select the + Create button

Examples

No examples yet...

7.7 - Notify Via SMS

Send an SMS message

Description

Send an SMS message. Messages are sent from info@tartansolutions.com email account. No outbound setup or data is required.

Carrier and Number

From the Mobile Provider dropdown list, select from hundreds of domestic and international providers. For the convenience of the majority of our customers, USA carriers are listed first, followed by all international options listed alphabetically.

Next, specify a valid phone number. Acceptable formats include the following:

  • 5555555555
  • 555.555-5555
  • 555.555.5555
  • 555-555-5555

Message

Specify Subject and Message as desired.

Please note that both Project Variables and Workflow Variables are available for use with this transform, in both the subject line as well as the message body.WARNING: Standard data rates may apply for recipients.

Examples

No examples yet...

7.8 - Notify Via Twitter

Send a direct message from PlaidCloud

Description

Send a Twitter Direct Message (DM) from @plaidcloud.

Twitter Account

Specify the twitter account to receive the DM from @plaidcloud. This user must be following @plaidcloud to receive the message. It is allowable, although not required, to prefix the username with the at sign (@).

Message

Enter the desired message. Analyze will not permit a value longer than 140 characters.

Please note that both Project Variables and Workflow Variables are available for use with this transform.

Examples

In this example, a DM is sent from @PlaidCloud to @tartansolutions. System variables are used in the message. The final message reads, Analyze Demo is running on #PlaidCloud.

7.9 - Notify Via Web Hook

Send a notification via Web Hook (URL)

Description

Send a notification via Web Hook (URL).

Examples

No examples yet...

8 - Agent Steps

8.1 - Agent Remote Execution of SQL

Execute specified SQL on a remote database through a PlaidLink Agent connection.

Description

Execute specified SQL on a remote database through a PlaidLink Agent connection.

8.2 - Agent Remote Export of SQL Result

Use a specified SQL on a remote database through PlaidLink Agent and export to PlaidCloud

Description

Execute specified SQL on a remote database through a PlaidLink Agent connection and export the result for use by PlaidCloud or other downstream systems.

Examples

No examples yet...

8.3 - Agent Remote Import Table into SQL Database

Import Data into SQL with PlaidLink Agent

Description

Imports specified data into SQL database on a remote system through a PlaidLink Agent connection.

Examples

No examples yet...

8.4 - Document - Remote Delete File

Deletes a remote file system file using a PlaidLink agent installed within the firewall

Description

Deletes a remote file system file using a PlaidLink agent installed within the firewall.

Examples

First, make a selection from the “Agent to Use” dropdown. Next, enter the file or folder path under “File or Folder Path for Delete”. Finally, select “Save and Run Step”.

8.5 - Document - Remote Export File

Exports a file to a remote file system using a PlaidLink agent installed within the firewall

Description

Exports a file to a remote file system using a PlaidLink agent installed within the firewall.

Examples

First, make a selection from the “Agent to Use” dropdown. Next, browse for the file or folder path under “File or Folder to Export”. Then enter the location under “Export Path Destination”. Finally, select “Save and Run Step”.

8.6 - Document - Remote Import File

Imports a remote file system file using a PlaidLink agent installed within the firewall.

Description

Imports a remote file system file using a PlaidLink agent installed within the firewall.

Examples

First, make a selection from the “Agent to Use” dropdown. Next, enter the file or folder path under “File or Folder Path for Import”. Then enter the folder destination under “Folder Destination”. Select the file type from the dropdown. Finally, select “Save and Run Step”.

8.7 - Document - Remote Rename File

Renames or moves a remote file system file using a PlaidLink agent installed within the firewall

Description

Renames or moves a remote file system file using a PlaidLink agent installed within the firewall.

Examples

First, make a selection from the “Agent to Use” dropdown.

Next, enter “Source Path” and “Destination Path”.

Finally, select “Save and Run Step”.

9 - General Steps

9.1 - Pass

This does nothing but may be useful for documenting workflows

Description

The Pass Through transform does not do anything. Its purpose as a placeholder is useful during development or when in need of a separator to section off steps during complex workflows.

9.2 - Run Remote Python

Run a Python file using PlaidLink

Description

This transform will run a Python file using PlaidLink. The Python file is executed on the remote system.

A set of global variables can be passed from the script execution on the remote system.

Examples

No examples yet...

9.3 - User Defined Transform

Use Python and Pandas directly in a workflow

Description

The Standard Workflow Transforms that come with PlaidCloud can typically perform nearly every operation you’ll need. Additionally, these Standard Transforms are continuously optimized for performance, and they provide the most robust data. However, when the standard options, used singularly or in groups, are not able to achieve your goals, you can create User Defined Transforms to meet your needs. Standard Python code is permitted.

Coding with Python is required to create a User Defined Transform. For additional information, please visit the Python website.

User Defined Transforms

To create a new User Defined Function (UDF), open the workflow which needs the custom transform, select the User Defined tab, and click the Add User Defined Function button. Specify an ID for the UDF. Once created, select the Edit function logic icon (far left) to open the “Edit User Defined Function” window.

Alternatively, a previously created User Defined function can be imported using the Import button from within the User Defined tab. Simply press that button and then select the appropriate workflow from the dropdown menu (this menu contains all workflows within the current workspace). Next, select the function(s) to be imported and press the Import Selected Functions button.

Once the function has been created/imported, proceed to the Analyze Steps tab of the workflow and add a User Defined Transform step in the appropriate position, just as you would add a Standard Transform. In the config window, select the appropriate User Defined Function from the dropdown menu.

9.4 - Wait

Pauses workflow execution for a specified period of time

Description

The Wait transform is used to pause processing for a specified duration. This can be especially helpful when waiting for I/O operations from other systems or for debugging workflows during development.

Duration Parameters

Specify a non-negative integer value using the Duration spinner.

Next, specify the unit of time from the dropdown menu. The following units are available for selection:

  • Seconds
  • Minutes
  • Hours

10 - PDF Reporting Steps

10.1 - Report Single

Generate a PDF document based on specific data from the report

Description

Generates a PDF report based on the defined RML template and input data sources for the report.

Examples

No examples yet...

10.2 - Reports Batch

Generate multiple PDF documents based on specific data from each report

Description

Generates many PDF reports based on the defined RML template and input data sources for each report.

Examples

No examples yet...

11 - Common Step Operations

11.1 - Advanced Data Mapper Usage

Using the advanced features of the Data Mapper

Review

Before jumping into the advanced usage capabilities of the Data Mapper, a brief review of the basic functionality will help.

Data Mapper Configuration

The Data Mapper is used to map columns from the source data to the target data table.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

Advanced Usage

Aggregation Options

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. The following summarization options are available:

FunctionDescription
Group ByGroups results by the value
CountNumber of non-null observations in group
Count (including nulls)Number of observations in group
SumSum of values in group
MeanMean of values in group
MedianMedian of values in group
ModeMode of values in group
MinMinimum of values in group
MaxMaximum of values in group
FirstFirst value of values in group using the sorted order
LastLast value of values in group using the sorted order
Standard DeviationUnbiased standard deviation in group
Sample Standard DeviationSample standard deviation in group
Population Standard DeviationPopulation standard deviation in group
VarianceUnbiased variance in group
Sample VarianceSample Variance in group
Population VariancePopulation Variance in group
Advanced Non-Group-BySpecial aggregation selection when using window functions

Pick the appropriate summarization method for the column.

When using a Window Function, select Advanced Non-Group-By as the aggregation method. This special selection is required due to the aggregation inherent in the window function already.

Constants

Specifying a value in the Constant column will override the source column value, if specified, and populate the column with the constant value specified.

Cleaners

The Data Mapper provides a convenient point-and-click cleaner capability to apply conversions to the data within a column.

The cleaning operations include the following categories:

  • Text Trimming
  • Text Formatting
  • Text Transformations
  • Converting to and from NULL values
  • Number Formatting
  • Date Parsing

The result of the cleaner selections are converted into a consolidated expression which is viewable in the Expression information.

Expressions

Expressions in the Data Mapper are one of the most powerful and flexible concepts in PlaidCloud. They provide nearly unlimited flexibility while being exceptionally performant, even on extremely large data.

Expressions are written using Python SQLAlchemy syntax along with a few additional helper functions available in PlaidCloud. This allows PlaidCloud to expose the full set of capabilities of the underlying data warehouse (e.g. Greenplum, SAP HANA, Redshift, etc...) directly. In addition, there are many resources available publicly that provide quick references for use of SQLAlchemy operations. By using standard SQLAlchemy syntax, PlaidCloud avoids the common pitfall of creating yet another domain specific syntax.

The expression editor is opened by double-clicking on the expression cell for the column. Once open, the list of columns are shown on the left while an extensive library of functions are shown on the right.

While it is entirely possible to type the expression directly into the editor, it is normally easier to use the point-and-click function and column selection to get started. The library of functions include the following groups:

  • Conditions
  • Column Specific Conditions
  • Conversions
  • Dates
  • Math
  • Text
  • Summarizations
  • Window Function Operations
  • Arrays
  • JSON
  • PostGIS (Geospatial)
  • Trigonmetry

Once you have completed the expression, save the expression so it will be applied to the column.

View examples and expression functions in the Expressions area.

12 - Allocation By Assignment Dimension

Allocate values based on driver data and assignment dimension

Description

Allocate values based on an assignment dimesion and driver data table.

Allocation By Dimension

Data Table Settings

Assignment Dimesion Hierarchy

Assignment Hierarchy

The Assignment Dimension Hierarchy gives the user the ability to point, click and filter either or both the Values To Allocate Table and Driver Data Table to create targeted allocations. The Assignment Dimension Hierarchy is created by combining dimensions that reference the Values To Allocate Table and the Driver Data Table.

Creating An Assignment Dimension Hierarchy

To create the Assignment Dimension Hierarchy you must first create the dimensions you wish to use to as filters for the Values To Allocate Table and the Driver Data Table. The links below will guide you through creating these dimensions.

Creating Dimensions

Loading Dimensions

Creating The Main Hierarchy

Once the dimensions for the Values To Allocate Table and the Driver Data Table have been created the next step is to decide which of the dimensions for the Values To Allocate Table will serve as the Main Hierarchy for the Assignment Dimension Hierarchy.

Copy this dimension by navigating to the Dimensions tab in PlaidCloud, clicking on the dimension and then selecting Actions and Copy Dimension. When you copy the dimension a pop-up will apprear asking you to enter a name for the copied dimension.

Adding Dimensions To The Assignment Hierarchy

Open the newley created Assignment Dimension, click on the down arrow next to Properties and select New Property.

Assignment Hierarchy Property

This will open the Property Configuration dialog box:

Property Configuration

Assignment Hierarchy Configure Property

  • Property Name - This is normally the name of the dimension that is being added to the Assignment Hierarchy.
  • Property Display - This should be set to "Tag".
  • Property Type - This property informs the allocation step which table Values To Allocate Table or the Driver Data Table this dimension is related too.
    • Source - Is used in conjunction with the Values To Allocate Table.
    • Target - Is used in conjunction with the Driver Data Table.
    • Driver - Is used to filter Driver Data Table for the specific driver selected.
    • Context - When the Values To Allocate Table and the Driver Data Table contain the same dimension then context can be used to specify how the dimensions should relate to one another. Context is often used when both the Values To Allocate Table and the Driver Data Table contain Profit / Cost Centers or Geography.
      • Current - Acts as a passthrough and will filter the Driver Data Table based on the settings of the target dimension. An example would be if the Cotext is based on the Profit Center dimension and the Profit Center target dimension is set to ALL then the driver data would filter on all Profit Centers.
      • Parent - When selected then the parent of the Profit Center in the Values To Allocate Table will be used to filter the driver values in the Driver Data Table. This is useful when driver values are, at times, not available for a specific Profit Center but often are at the parent level.
      • All - When selected then the Profit Center in the Values To Allocate Table will not filter the driver values in the Driver Data Table, driver values for all Profit Centers will be used.
  • Editor Type - This drop down should be set to Select Dimension.

Once the appropriate properties have been selected for the dimension being added to the Assignment Hierarchy select "Edit Configuration".

Dimension Configuration

Assignment Hierarchy Configure

  • Dimension - Use the drop down to select the dimension.
  • Hierarchy - If the dimension selected has alternate hierarchies, then they will appear and be selectable here as well as the main hierarchy.
  • Start Node - If you don't wish the dimension to be displayed from the top node you can select any node within the hierarchy as the node from which the dimension will be displayed.
  • Allow Multiple Selections - If checked the user will be able to select multiple nodes in the hierarchy.
  • Special Cases - When selected the special cases will be available for selection in the dimension drop down menu. They are typically used in Target dimensions.
    • Source - When a dimension is set to Source the allocation will ignore this dimension when it filters the Driver Data Table but the allocated results will include values from the dimension.
    • Current - Can be used when a dimension is shared between Source and Target. When the Target dimension is set to Current then the Driver Data Table will be filtered by the current value of the Source dimension as the allocation runs. An example would be if there are multiple periods in the Values To Allocate Table and the Driver Data Table but you want the allocation to allocate within the periods and not acrocss them. It is also common to use Current on Business Units, Cost Centers and Geographies.
    • Unassigned - When a dimension is set to Unassigned the allocation will ignore this dimension when it filters the Driver Data Table and the allocation result for this dimension will be a Null value.
    • All - When a dimension is set to ALL then the allocation will use all the values in the dimension.

The Values To Allocate Table, Driver Data Table and Allocation Result Table can be selected dynamically or statically.

Dynamic Table Selection

The dynamic table option allows specification of a table using text and variables. This is useful when employing variable driven workflows where the table or view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to a table:

legal_entity/inputs/{current_month}/ledger_values

Static Table Selection

When a specific table is desired as the source, leave the Dynamic box unchecked and select the source table using the dropdown menu.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Values To Allocate Table

This is the table that contains the values that are to be allocated. These are typically cost or revenue values.

Driver Data Table

The driver data table contains the values that the allocation step will use to allocate costs.

Examples:

  • For a supply chain to assign costs to customers you might use delivery data with the number of deliveries or the weight of the deliveries as the driver.
  • For an IT help desk to assign its costs to the departments it supports the driver data be the number of tickets by cost center.

Driver Data Sign Rule

Driver data can contain both positive and negative values. The Driver Data Sign Rule lets you decide how conflicting signs will be handled.

  • Error on conficting signs - Allocation step will produce an error and stop if conflicting signs are encountered.
  • Proceed with warning on conflicting signs - Allocation step will use both negative and positive driver values but will display a warning.
  • Use only positive driver values - Allocation step will only use positive driver values, will ignore negative values.
  • Use only negative driver values - Allocation step will only use negative driver values, will ignore positive values.
  • Use absolute values of driver data - Allocation step will use the absolute values of the driver data.

Intermediate Tables

The Intermediate Tables are created each time an allocation step runs and provides a summary of the allocation processing. The Intermediate Tables provide insight into how the alloation process is running an are used to trouble shoot unexpected results.

  • Paths - Shows the number of unique allocation paths summarized from the assignment hierarchy.
  • Mapping - Shows how each line of the Values To Allocate Table are mapped to the allocation targets.
  • Summary - Shows each rule, as a result of the assignment hierachy, and how many of the records from the Values To Allocate Table match it.

Allocation Result Table

Append Results to Target Table

If this box is checked the allocation results will be appended to the allocation result table. If this box is not checked the allocation results table will be overwritten each time the allocation step runs.

Separate Columns for Allocated Results

If this box is checked then the results table will show the amount of each allocated record as well as the amount actually allocated to each driver record.

Rename Dimension Nodes

If this box is checked when the allocation step runs it will rename the dimension node in the Assignment dimension.

Advanced Options

Thread Count

Sets the number of concurrent operations the allocation step will use.

Chunk Size

Set the number of allocation paths within a thread.

Allocation Source Map

Allocation Source Map

The Allocation Source Map is used to map the columns from the Values To Allocate Table that will be used in the allocation step.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Role

Each column in the data mapper must be assigned a role:

  • Pass Thought - These columns will appear in the allocation results table.
  • Value to Allocate - This is the column that contains the values to be allocated.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Allocation Source Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Driver Data Map

Allocation Driver Data Map

The Allocation Driver Data Map is used to map the columns from the Driver Data Table that will be used in the allocation step.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Role

Each column in the data mapper must be assigned a role:

  • Source Relation - These columns have corresponing columns in the Values To Allocate Table.
  • Allocation Target - The columns will be the target of the allocation step and will appear in the Allocation Result Table.
  • Split Value - This column contains the values that will be used to allocate the values in the Values To Allocate Table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Driver Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Examples

Example 1

Values To Allocate Table

Allocation By Dimension

Driver Data Table

Allocation By Dimension

Assignment Dimension Hierarchy

Allocation By Dimension

Since the Target RC dimension is set to Current the driver data will be filtered by the Source RC values in the Values To Allocation Table. Since the only value in the Source RC is "A", only the driver value records where RC = A will be used in the allocation step.

Allocation Results Table

Allocation By Dimension

Example 2

Values To Allocate Table

Allocation By Dimension

Driver Data Table

Allocation By Dimension

Assignment Dimension Hierarchy

Allocation By Dimension

Since the Target RC dimension is set to ALL the driver data will include all RC values as you can see in the RC column in the Allocation Results Table.

Allocation Results Table

Allocation By Dimension

Example 3

Values To Allocate Table

Allocation By Dimension

Driver Data Table

Allocation By Dimension

Assignment Dimension Hierarchy

Allocation By Dimension

With the Context RC set to ALL and the Target RC set to Source the driver data will include all the RC in the driver data. The Contect RC will override the setting on the Target RC.

Allocation Results Table

Allocation By Dimension

Example 4

Values To Allocate Table

Allocation By Dimension

Driver Data Table

Allocation By Dimension

Assignment Dimension Hierarchy

Allocation By Dimension

With the Context RC set to ALL the driver data will include all the RC in the driver data.

Allocation Results Table

Allocation By Dimension

13 - Allocation Split

Allocate values based on driver data

Description

Allocate values based on driver data.

Allocation Split

Data Table Settings

The Values To Allocate Table, Driver Data Table and Allocation Result Table can be selected dynamically or statically.

Dynamic Table Selection

The dynamic table option allows specification of a table using text and variables. This is useful when employing variable driven workflows where the table or view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to a table:

legal_entity/inputs/{current_month}/ledger_values

Static Table Selection

When a specific table is desired as the source, leave the Dynamic box unchecked and select the source table using the dropdown menu.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Values To Allocate Table

This is the table that contains the values that are to be allocated. These are typically cost or revenue values.

Driver Data Table

The driver data table contains the values that the allocation step will use to allocate costs.

Examples:

  • For a supply chain to assign costs to customers you might use delivery data with the number of deliveries or the weight of the deliveries as the driver.
  • For an IT help desk to assign its costs to the departments it supports the driver data be the number of tickets by cost center.

Driver Data Sign Rule

Driver data can contain both positive and negative values. The Driver Data Sign Rule lets you decide how conflicting signs will be handled.

  • Error on conficting signs - Allocation step will produce an error and stop if conflicting signs are encountered.
  • Proceed with warning on conflicting signs - Allocation step will use both negative and positive driver values but will display a warning.
  • Use only positive driver values - Allocation step will only use positive driver values, will ignore negative values.
  • Use only negative driver values - Allocation step will only use negative driver values, will ignore positive values.
  • Use absolute values of driver data - Allocation step will use the absolute values of the driver data.

Allocation Result Table

Append Results to Target Table

If this box is checked the allocation results will be appended to the allocation result table. If this box is not checked the allocation results table will be overwritten each time the allocation step runs.

Separate Columns for Allocated Results

If this box is checked then the results table will show the amount of each allocated record as well as the amount actually allocated to each driver record.

Allocation Source Map

Allocation Source Map

The Allocation Source Map is used to map the columns from the Values To Allocate Table that will be used in the allocation step.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Role

Each column in the data mapper must be assigned a role:

  • Pass Thought - These columns will appear in the allocation results table.
  • Value to Allocate - This is the column that contains the values to be allocated.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Allocation Source Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

Driver Data Map

Allocation Driver Data Map

The Allocation Driver Data Map is used to map the columns from the Driver Data Table that will be used in the allocation step.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Role

Each column in the data mapper must be assigned a role:

  • Source Relation - These columns have corresponing columns in the Values To Allocate Table.
  • Allocation Target - The columns will be the target of the allocation step and will appear in the Allocation Result Table.
  • Split Value - This column contains the values that will be used to allocate the values in the Values To Allocate Table.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Driver Data Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

14 - Rule-Based Tagging

Tag data based on rules

Description

Rule Based Tagging is used to add attributes contained within a dimesion to a data table.

Rule Based Tagging

Data Table Settings

The Source Table and Tagging Result Table can be selected dynamically or statically.

Dynamic Table Selection

The dynamic table option allows specification of a table using text and variables. This is useful when employing variable driven workflows where the table or view references are relative to the variables specified.

An example that uses the current_month variable to dynamically point to a table:

legal_entity/inputs/{current_month}/ledger_values

Static Table Selection

When a specific table is desired as the source, leave the Dynamic box unchecked and select the source table using the dropdown menu.

Table Explorer is always avaible with any table selection. Click on the Table Explorer button to the right of the table selection and a Table Explorer window will open.

Source Table

This is the table that contains the data that you wish to add the attributes from the Assignment Dimension to.

Rule Based Tagging

Tagging Result Table

The Tagging Result Table will contain the data from the Source Data Table with the attributes contained in the Assignment Dimension Hierarchy.

Rule Based Tagging

Assignment Dimesion Hierarchy

Rule Based Tagging

The Assignment Dimension Hierarchy gives the user the ability to point, click and filter the Source Table to add attributes to the Tagging Result Table. The Assignment Dimension Hierarchy is created by combining dimensions that reference the Source Table.

Creating An Assignment Dimension Hierarchy

To create the Assignment Dimension Hierarchy you must first create the dimensions you wish to use to as filters for the Source Table. The links below will guide you through creating these dimensions.

Creating Dimensions

Loading Dimensions

Creating The Main Hierarchy

Once the dimensions for the Source Table have been created the next step is to decide which of the dimensions for the Source Table will serve as the Main Hierarchy for the Assignment Dimension Hierarchy.

Copy this dimension by navigating to the Dimensions tab in PlaidCloud, clicking on the dimension and then selecting Actions and Copy Dimension. When you copy the dimension a pop-up will apprear asking you to enter a name for the copied dimension.

Adding Dimensions To The Assignment Hierarchy

Open the newley created Assignment Dimension, click on the down arrow next to Properties and select New Property.

Assignment Hierarchy Property

This will open the Property Configuration dialog box:

Property Configuration

Assignment Hierarchy Configure Property

  • Property Name - This is normally the name of the dimension that is being added to the Assignment Hierarchy.

  • Property Display - This should be set to "Tag".

  • Property Type - For Rule Based Tagging property type should be set to Source.

    • Source - Is used in conjunction with the Source Table.
  • Editor Type - This drop down should be set to Select Dimension.

Once the appropriate properties have been selected for the dimension being added to the Assignment Hierarchy select "Edit Configuration".

Dimension Configuration

Assignment Hierarchy Configure

  • Dimension - Use the drop down to select the dimension.
  • Hierarchy - If the dimension selected has alternate hierarchies, then they will appear and be selectable here as well as the main hierarchy.
  • Start Node - If you don't wish the dimension to be displayed from the top node you can select any node within the hierarchy as the node from which the dimension will be displayed.
  • Allow Multiple Selections - If checked the user will be able to select multiple nodes in the hierarchy.
  • Special Cases - Are not used in Rule Based Tagging.

Source Map

Allocation Source Map

The Allocation Source Map is used to map the columns from the Values To Allocate Table that will be used in the allocation step.

Inspection and Populating the Mapper

Using the Inspect Source menu button provides additional ways to map columns from source to target:

  • Populate Both Mapping Tables: Propagates all values from the source data table into the target data table. This is done by default.
  • Populate Source Mapping Table Only: Maps all values in the source data table only. This is helpful when modifying an existing workflow when source column structure has changed.
  • Populate Target Mapping Table Only: Propagates all values into the target data table only.

If the source and target column options aren’t enough, other columns can be added into the target data table in several different ways:

  • Propagate All will insert all source columns into the target data table, whether they already existed or not.
  • Propagate Selected will insert selected source column(s) only.
  • Right click on target side and select Insert Row to insert a row immediately above the currently selected row.
  • Right click on target side and select Append Row to insert a row at the bottom (far right) of the target data table.

Role

Each column in the data mapper must be assigned a role:

  • Pass Thought - These columns will appear in the allocation results table.
  • Value to Allocate - This is the column that contains the values to be allocated.

Deleting Columns

To delete columns from the target data table, select the desired column(s), then right click and select Delete.

Chaging Column Order

To rearrange columns in the target data table, select the desired column(s). You can use either:

  • Bulk Move Arrows: Select the desired move option from the arrows in the upper right
  • Context Menu: Right clikc and select Move to Top, Move Up, Move Down, or Move to Bottom.

Reduce Result to Distinct Records Only

To return only distinct options, select the Distinct menu option. This will toggle a set of checkboxes for each column in the source. Simply check any box next to the corresponding column to return only distinct results.

Depending on the situation, you may want to consider use of Summarization instead.

The distinct process retains the first unique record found and discards the rest. You may want to apply a sort on the data if it is important for consistency between runs.

Aggregation and Grouping

To aggregate results, select the Summarize menu option. This will toggle a set of select boxes for each column in the target data table. Choose an appropriate summarization method for each column.

  • Group By
  • Sum
  • Min
  • Max
  • First
  • Last
  • Count
  • Count (including nulls)
  • Mean
  • Standard Deviation
  • Sample Standard Deviation
  • Population Standard Deviation
  • Variance
  • Sample Variance
  • Population Variance
  • Advanced Non-Group_By

For advanced data mapper usage such as expressions, cleaning, and constants, please see the Advanced Data Mapper Usage

Source Filters

Table Data Filters

To allow for maximum flexibility, data filters are available on the source data and the target data. For larger data sets, it can be especially beneficial to filter out rows on the source so the remaining operations are performed on a smaller data set.

Select Subset Of Data

This filter type provides a way to filter the inbound source data based on the specified conditions.

Apply Secondary Filter To Result Data

This filter type provides a way to apply a filter to the post-transformed result data based on the specified conditions. The ability to apply a filter on the post-transformed result allows for exclusions based on results of complex calcuations, summarizaitons, or window functions.

Final Data Table Slicing (Limit)

The row slicing capability provides the ability to limit the rows in the result set based on a range and starting point.

Filter Syntax

The filter syntax utilizes Python SQLAlchemy which is the same syntax as other expressions.

View examples and expression functions in the Expressions area.

15 - SAP ECC and S/4HANA Steps

15.1 - Call SAP Financial Document Attachment

Calls an SAP ECC Remote Function Call (RFC) designed to attach a file to specified FI document number

Description

Calls an SAP ECC Remote Function Call (RFC) designed to attach a file to specified FI document number.

Examples

RFC Parameters

Select Agent to Use. Select Target Directory from the drop down bar, and browse below for the correct child folder destination for the file. Next, appropriately name the “Target File Name”. Under “Function Call Information”, enter the Function, the Return Value Parameter, and select the parameters.

You can choose to Insert Row or Append Row under the Parameters section, as well as name the parameters and give them values. Choose the Max Concurrent Requests number, and select Wait for RFC to Complete. Save and Run Step.

15.2 - Call SAP General Ledger Posting

Calls an SAP ECC Remote Function Call (RFC) designed to post a journal entry including applicable VAT and Withholding taxes

Description

Calls an SAP ECC Remote Function Call (RFC) designed to post a journal entry including applicable VAT and Withholding taxes. This may also run in test mode which will perform a posting process but not complete the posting. This allows for the collection of detectable errors such as an account being closed or a customer not existing in the specified company code specified. The error checking is robust with the ability to return multiple detected errors in a single test.

Examples

RFC Parameters

Select Agent to Use. Select Target Directory from the drop down bar, and browse below for the correct child folder destination for the file. Next, appropriately name the “Target File Name”. Under “Function Call Information”, enter the Function, the Return Value Parameter, and select the parameters.

You can choose to Insert Row or Append Row under the Parameters section, as well as name the parameters and give them values. Choose the Max Concurrent Requests number, and select Wait for RFC to Complete. Save and Run Step.

15.3 - Call SAP Master Data Table RFC

Calls an SAP ECC Remote Function Call (RFC) designed to access master data tables and retrieves the data in tabular form

Description

Calls an SAP ECC Remote Function Call (RFC) designed to access master data tables and retrieves the data in tabular form. This data is then available for transformation processes in PlaidCloud. It also provides the ability to export the master data table structure to a separate file which includes column names, data types, and column order information.

Examples

RFC Parameters

Select Agent to Use. Select Target Directory from the drop down bar, and browse below for the correct child folder destination for the file. Next, appropriately name the “Target File Name”. Under “Function Call Information”, enter the Function, the Return Value Parameter, and select the parameters.

You can choose to Insert Row or Append Row under the Parameters section, as well as name the parameters and give them values. Choose the Max Concurrent Requests number, and select Wait for RFC to Complete. Save and Run Step.

15.4 - Call SAP RFC

Calls an SAP ECC Remote Function Call (RFC) and retrieves the data in tabular form

Description

Calls an SAP ECC Remote Function Call (RFC) and retrieves the data in tabular form. This data is then available for transformation processes in PlaidCloud.

Examples

RFC Parameters

Select Agent to Use. Select Target Directory from the drop down bar, and browse below for the correct child folder destination for the file. Next, appropriately name the “Target File Name”. Under “Function Call Information”, enter the Function, the Return Value Parameter, and select the parameters.

You can choose to Insert Row or Append Row under the Parameters section, as well as name the parameters and give them values. Choose the Max Concurrent Requests number, and select Wait for RFC to Complete. Save and Run Step.

Advanced Value Iteration

You can select “No Iterators” at the top of this tab and then select Save and Run Step if desired, or you can specify.

Here, you can select “Specify Argument Values” to Iterate Over and create arguments to then go to the Iteration Value.

Next to Select Iterator Argument to Edit Values, there is the option to Insert Tow, Append Row, Delete Row, Move Down Row, or Move to Bottom Row. Below you can choose Range Iterators using the same drop down menu. The last section is titled “Exclusions for Selected Range Iteration” with the same options per row to add, delete, etc. The excluded values can be entered below. Save and Run Step.

16 - SAP PCM Steps

16.1 - Create SAP PCM Model

This feature allows you to create a blank SAP PCM Model

Description

Creates a blank SAP Profitability and Cost Management (PCM) model.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown. Enter “Model Name” and select “Model type” from the dropdown (both of which are in the “Model Information” section). Check the “Wait for Copy to Complete” check box, then click “Save and Run Step”.

16.2 - Delete SAP PCM Model

Deletes SAP Profitability and Cost Management (PCM) models matching the search criteria

Description

Deletes SAP Profitability and Cost Management (PCM) models matching the search criteria. Deleting models using this transform allows deletion of many models without having to monitor the process.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select “Agent to Use” from the dropdown. Select your desired “Model Search Method”. For this example, we’ve selected “Exact Match”. Enter “Model Search Text” (what you are looking for) under “Model Name Information” and decide if the search is case sensitive or not (if so, check the check box). Finally, check the “Wait for Deletion to Complete” and click “Save and Run Step”.

16.3 - Calculate PCM Model

Start your PCM Model Calculation Process

Description

Starts SAP Profitability and Cost Management (PCM) model calculation process.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown, enter model name in the “Model Name” field, click the “Wait for Calculation to Complete” check box (if desired), then click “Save and Run Step”.

16.4 - Copy SAP PCM Model

Copy an SAP PCM model

Description

Copies an SAP Profitability and Cost Management (PCM) model.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Example

Select Agent to Use from the dropdown, enter “From Model Name” and “To Model Name” in the “Model Information” field, click the “Wait for Copy to Complete” check box, then click “Save and Run Step”.

16.5 - Copy SAP PCM Period

Copy period within an SAP PCM model

Description

Copies an SAP Profitability and Cost Management (PCM) model period within the same model.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown, enter “Model Name”, “From Period Name” and “To Period Name” in the “Model Information” field. Click the “Wait for Copy to Complete” check box, then click “Save and Run Step”.

16.6 - Copy SAP PCM Version

Copy your a version within an SAP PCM model

Description

Copies an SAP Profitability and Cost Management (PCM) model version within the same model.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown, enter “Model Name”, “Origin Period Name”, and “Destination Period Name” in the “Model Information” field. Click the “Wait for Copy to Complete” check box, then click “Save and Run Step”.

16.7 - Rename SAP PCM Model

Renames your SAP Profitability and Cost Management model

Description

Renames an SAP Profitability and Cost Management (PCM) model.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown, enter “From Model Name” and “To Model Name” in the “Model Information” field, click the “Wait for Copy to Complete” check box, then click “Save and Run Step”.

16.8 - Run SAP PCM Console Job

Launch you PCM model onto the PCM server

Description

Launches an SAP Profitability and Cost Management (PCM) Console process on the PCM server.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown, enter console file path in the “Console File Path” field, click the “Wait for Console Job to Complete” check box (if desired), then click “Save and Run Step”.

16.9 - Run SAP PCM Hyper Loader

Load your PCM model using direct table loads

Description

Loads an SAP Profitability and Cost Management (PCM) model using direct table loads. This process is significantly faster than Databridge. The Hyper Loader supports virtually all of the current PCM data, assignment, and structure tables.

This is the current list of available loading targets:

  • Activity Aliases
  • Activity Dimensional Hierarchy
  • Activity Driver Aliases
  • Activity Driver Dimensional Hierarchy
  • Activity Driver Value
  • BOM Default Makeup
  • BOM External Unit Rate
  • BOM Makeup
  • BOM Production Volume
  • BOM Units Sold
  • Cost Object 1 Aliases
  • Cost Object 1 Dimensional Hierarchy
  • Cost Object 2 Aliases
  • Cost Object 2 Dimensional Hierarchy
  • Cost Object 3 Aliases
  • Cost Object 3 Dimensional Hierarchy
  • Cost Object 4 Aliases
  • Cost Object 4 Dimensional Hierarchy
  • Cost Object 5 Aliases
  • Cost Object 5 Dimensional Hierarchy
  • Cost Object Assignment
  • Cost Object Driver
  • Line Item Aliases
  • Line Item Detail Aliases
  • Line Item Detail Dimensional Hierarchy
  • Line Item Detail Value
  • Line Item Dimensional Hierarchy
  • Line Item Direct Activity Assignment
  • Line Item Resource Driver Assignment
  • Line Item Value
  • Period Aliases
  • Period Dimensional Hierarchy
  • Resource Driver Aliases
  • Resource Driver Dimensional Hierarchy
  • Resource Driver Split
  • Resource Driver Value
  • Responsibility Center Aliases
  • Responsibility Center Dimensional Hierarchy
  • Revenue
  • Revenue Aliases
  • Revenue Dimensional Hierarchy
  • Service Aliases
  • Service Dimensional Hierarchy
  • Spread Aliases
  • Spread Dimensional Hierarchy
  • Spread Value
  • Version Aliases
  • Version Dimensional Hierarchy
  • Worksheet 1 Aliases
  • Worksheet 1 Dimensional Hierarchy
  • Worksheet 2 Aliases
  • Worksheet 2 Dimensional Hierarchy
  • Worksheet Value

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown. Enter model name and select the load package storage path location, then select the child folder desired from within. Use the Table Data Selection below to select the source table model and the target load table. Inspect source>>propagate both sides of the table will reveal the data. Click “Save and Run Step” when the data is entered and you have added any expressions.

16.10 - Stop PCM Model Calculation

This function stops a PCM Model calculating process

Description

Stops an SAP Profitability and Cost Management (PCM) model calculation process.

Our Credentials

Tartan Solutions is an official SAP Partner and a preferred vendor of services related to SAP PCM model design and implementation.

Examples

Select Agent to Use from the dropdown, enter “Model Name”, click the “Wait for Copy to Complete” check box, then click “Save and Run Step”.